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Abstract

Uncertainty quantification (UQ) in CFD computations is receiving increased in-
terest, due in large part to the increasing complexity of physical models, and the
inherent introduction of random model data. This paper focuses on recent applica-
tion of Polynomial Chaos (PC) methods for uncertainty representation and propa-
gation in CFD computations. The fundamental concept on which Polynomial Chaos
(PC) representations are based is to regard uncertainty as generating a new set of
dimensions, and the solution as being dependent on these dimensions. A spectral
decomposition in terms of orthogonal basis functions is used, the evolution of the
basis coefficients providing quantitative estimates of the effect of random model
data. A general overview of PC applications in CFD is provided, focusing exclu-
sively on applications involving the unreduced Navier-Stokes equations. Included
in the present review are an exposition of the mechanics of PC decompositions,
an illustration of various means of implementing these representation, a perspec-
tive on the applicability of the corresponding techniques to propagate and quantify
uncertainty in Navier-Stokes computations.
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1 Introduction

The increasing complexity of physical models in CFD computations is fre-
quently accompanied by the introduction of uncertain model data, such as
inexact knowledge of system forcing, initial and boundary conditions, physi-
cal properties of the medium, as well as parameters in rate expressions. These
situations underscore the need for efficient UQ methods, namely for the es-
tablishment of confidence intervals in computed predictions, the assessment of
the suitability of model formulations, and/or the support of decision-making
analysis. This paper provides a survey of recent applications of PC represen-
tations [4, 47] to propagate and quantify uncertainty in CFD computations.

PC methods rely on a probabilistic framework, which distinguishes them from
alternative approaches in uncertainty assessment including fuzzy set theories,
interval analysis, convex analysis, as well as linearization and perturbation
methods. The fundamental concept on which PC decompositions are based
is to regard uncertainty as generating a new dimension and the solution as
being dependent on this dimension. A convergent expansion along the new
dimension is then sought in terms of a set of orthogonal basis functions, whose
coefficients can be used to quantify and characterize the uncertainty. The
motivation behind PC approaches includes its suitability to models expressed
in terms of partial differential equations, the ability to deal with situations
exhibiting steep non-linear dependence of the solution on random model data,
and the promise of obtaining efficient and accurate estimates of uncertainty. In
addition, such information is provided in a format that permits it to be readily
used to probe the dependence of specific observables on particular components
of the input data, to design experiments in order to better calibrate or test
the validity of postulated models.

Polynomial Chaos based methods have been extensively used for uncertainty
quantification (UQ) in engineering problems of solid and fluid mechanics (e.g.
elastic structures [18, 36], flow through porous media [13, 14], thermal prob-
lems [19, 24], combustion [44], and also in the analysis of turbulent velocity
fields [8, 9, 38]. In contrast, application of PC methods to models involving
the full (unreduced) Navier-Stokes (NS) equations is relatively more recent,
though various attempts have been reported. This review focuses specifically
on these applications.

Our objective is not to provide an in-depth review of the mathematical theory
of PC methods, nor of its rigorous convergence proofs and accuracy estimates.
Rather, we shall restrict our attention to the mechanics of the implementation
of PC methods to CFD computations involving the unreduced NS equations.
Section 2 provides a brief introduction to the probabilistic framework of uncer-
tainty representation, a basic outline of PC decomposition, and then illustrates
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implementation of this framework to the incompressible Navier-Stokes equa-
tions. Attention is initially focused on Galerkin approaches relying on classi-
cal Wiener-Hermite expansions [4, 47]. In section 3 a discussion is provided
of computational aspects of PC operations, briefly touching on the treatment
of higher-order non-linearities. Section 4 discusses alternatives to weighted
residual approaches bases on so-called non-intrusive formulations, while sec-
tion 5 discusses generalizations of the Wiener-Hermite chaos. We conclude in
section 6 with an outlook on future areas of investigation.
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2 Polynomial Chaos Decompositions

The central question at hand is to characterize the solution of a problem where
some of the parameters have been modeled as random variables or processes.
PC decompositions implicitly rely on a probabilistic framework [15] in ad-
dressing this question. A random variable will thus be viewed as a function
of a single variable that refers to the space of elementary events. Similarly, a
stochastic process or field is then a function of n + 1 variables where n is the
physical dimension of the space over which each realization of the process is
defined.

Contrary to Monte-Carlo (MC) simulation, which can be viewed as a colloca-
tion method in the space of random variables, PC decomposition are based on
coupling Hilbert space concepts –specifically projections of random functions–
directly with models of computational mechanics. Random variables, defined
as measurable functions from the set of basic events onto the real line, provide
the mechanism for achieving such coupling, and the solution to the problem
will be identified with its projection on a set of appropriately chosen basis func-
tions. This approach is thus consistent with the identification of the space of
second-order random variables ∗ as a Hilbert space with the inner product on
it defined as the mathematical expectation operation [31]. This Hilbert space
structure is very convenient as it forms the foundation of many methods of
deterministic numerical analysis; in addition, projections on subspaces as well
as convergent approximations can now be unambiguously defined, quantified,
and refined as necessary.

2.1 Random Variables and Processes

For brevity, we shall restrict our attention in this section to the case of Gaus-
sian random variables and processes. Recall that a Gaussian process, E(x, θ),
can be characterized by its covariance function REE(x, y). Here, x and y are
used to denote spatial coordinates, while θ is used to denote the random nature
of the corresponding quantity. Being symmetrical and positive definite, REE

has all its eigenfunctions mutually orthogonal, and they form a complete set
spanning the function space to which E belongs. It can be shown that if this
set of deterministic eigenfunctions is used to represent E, then the random co-
efficients appearing in the expansion are also orthogonal. The process can thus
be expressed in terms of the well-known Karhunen-Loève (KL) expansion [31]:

E(x, θ) = E(x) +
∞
∑

i=1

√

λiξi(θ)φi(x), (1)

∗ Second-order random variables are those random variables with finite variance.
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where E(x) is the mean of the stochastic process, ξi(θ) are orthogonal random
variables, while φi(x) and λi are the eigenfunctions and eigenvalues of of the
covariance kernel, respectively. φi(x) and λi are the solution of the following
integral equation:

∫

D

REE(x, y)φi(y)dy = λiφi(x), (2)

where D denotes the domain over which E(x, θ) is defined.

Note that the KL expansion is mean-square convergent irrespective of the
probabilistic structure of the process being expanded, provided it has finite
variance [31]. The closer a process is to white noise, the more terms are required
in the expansion. Conversely, a Gaussian random variable, α, be represented
by a single term, i.e. the KL expansion can be reduced to:

α = ᾱ + σαξ (3)

where ᾱ is the mean, σα is the standard deviation, and ξ is normalized Gaus-
sian with unit standard deviation.

2.2 Polynomial Chaos Decomposition

The covariance function of the solution process is not known a priori, and
hence the KL expansion may not be used to approximate it. Furthermore,
even when the problem specification only involves Gaussian parameters or
processes, the solution process is not necessarily Gaussian, so that the KL
representation may not be a suitable approximation even when much is known
about the covariance function of the solution. Thus, an alternative represen-
tation means is needed, and the PC decomposition addresses this need.

Since the solution process, u, is a function of the random data, it is natural
to seek to represent it as a non-linear functional of the ξi’s that are used to
represent the random data. It can be shown [4] that this functional depen-
dence can be expressed in terms of polynomial functions of the ξi, known as
polynomial chaoses, according to:

u = a0Γ0 +
∞
∑

i1=1

ai1Γ1(ξi1) +
∞
∑

i1=1

∞
∑

i2=1

ai1i2Γ2(ξi1, ξi2) + . . . (4)

where Γn(ξi1, . . . , ξin) denotes the Polynomial Chaos [20, 47] of order n in the
variables (ξi1, . . . , ξin). The polynomial chaoses are usually generalized multidi-
mensional Hermite polynomials of independent variables that are measurable
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functions with respect to the Wiener measure. In particular, when the inde-
pendent variables are identified as the Gaussian vector ξ = (ξ1, ξ2, · · · , ξn),
one recovers the familiar expression of the expectation:

〈f〉 =
1

(2π)n/2

∞
∫

−∞

f(ξ) exp

(

−|ξ|2
2

)

dξ (5)

where |ξ|2 =
∑n

i=1 ξ2
i .

The zero, first, and second-order polynomials are given by [18]:

Γ0 = 1, Γ1(|xii) = ξi, Γ2(ξi, ξj) = ξiξjδij (6)

where δij is the Kronecker delta. For computational purposes, the “generic” PC
representation (4) must be suitably truncated, and this is typically performed
by retaining polynomials of order ≤ p, where p is a prescribed value. It is
also convenient (section 3) to introduce a one-to-one mapping between the
set of indices appearing in the truncated sum corresponding to (4) and a set
of ordered indices, and rewrite the truncated sum in (4) in single-index form
according to:

u '
P
∑

j=0

ujΨj (7)

where the Ψj denote the polynomial chaoses in single-index notation, while
P +1 is the total number of polynomials chaoses of order ≤ p. Note that for the
one-dimensional case, P = p, while in a space with n stochastic dimensions [11]

P =
(p + n)!

p!n!
− 1. (8)

Note that the polynomials are mutually orthogonal, in the sense that the inner
product 〈ΨiΨj〉 = 0 when i 6= j. Moreover, the set {Ψj}∞j=1 can be shown to
form a complete basis in the space of second-order random variables. Specif-
ically, any second-order process u has a mean-square convergent expansion
given in equation (4) where Γp(.) is the Polynomial Chaos of order p [4]. Also
note that the PC expansion can be used to represent, in addition to the so-
lution process, both Gaussian and non-Gaussian model data. One can verify
this by observing that the first summation in an expansion of the form given
by Eq. (4) represents a Gaussian component; thus, for a Gaussian function,
expansion (4) reduces to a single summation, the coefficients ai1 being the coef-
ficients in the Karhunen-Loève expansion of the function [12,18]. Accordingly,
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the additional summations in the expansion are immediately identified as rep-
resenting the non-Gaussian behavior of the function in terms of a non-linear,
(polynomial) functional dependence on the independent Gaussian variables.

In order to obtain a complete probabilistic characterization of the solution
process, u, it is sufficient to determine the “deterministic” coefficients uj ap-
pearing in Eq. (7). Due to the orthogonality of the Ψ’s, the coefficients of the
PC expansion of u satisfy:

uj =
〈uΨj〉
〈

Ψ2
j

〉 , (9)

for j = 0, . . . , P . As mentioned in the introduction, we shall primarily focus on
determination of the uj’s using a Galerkin approach, and the latter is initially
outlined for a generic stochastic process, u, governed by:

O(u(ξ), ξ) = 0, (10)

where O is an non-linear operator. The Galerkin scheme is based on intro-
ducing the expansion (7) into (10) and taking orthogonal projections onto the
truncated basis, which results in the following system for the basis function
coefficients:

〈

O
(

∑

i

uiΨi(ξ), ξ

)

, Ψj

〉

= 0, j = 0, . . . , P. (11)

Solution of the above coupled system then yields the desired coefficients. Be-
low, we focus on implementation of this approach to the incompressible NS
equations.

2.3 Application to the Incompressible NS Equations

Application of the PC decomposition above is illustrated by outlining the con-
struction of the stochastic projection method (SPM) as originally introduced
in [25]. The SPM focuses on the numerical solution of the incompressible NS
equations:

∂u

∂t
+ (u · ∇)u =−∇p + ν∇2u (12)

∇ · u =0 (13)
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where u = (u, v) is the velocity vector, t is time, p is the pressure, and ν the
kinematic viscosity. For brevity, we focus on the solution of Eqs. (12-13) in a
2D domain, D, with specified velocity boundary conditions on ∂D satisfying:

∫

Γ

undA = 0 (14)

where Γ = ∂D is the boundary of D, un is the component of u normal to
Γ, and dA is the surface element along Γ. We also restrict our attention to
the case of a single parameter, and illustrate the case of a Gaussian initial
condition:

u(x, t = 0) = ū(x) + ξu′(x) (15)

where ξ is a Gaussian variable with unit variance, and ū(x) and u′(x) are
given quantities. Note that in the present case ū and u′ represent the mean
and standard deviation of the initial velocity field, respectively. One can im-
mediately verify this claim from the definitions of mean and variance applied
to each of the velocity components. For instance, for the u component, we
have:

〈u(x, t = 0)〉≡ 〈ū(x) + ξu′(x)〉 = ū(x), and (16)

σu(x,t=0) ≡
〈

(u(x, t = 0) − 〈u(x, t = 0)〉)2
〉1/2

= |u′(x)| . (17)

The development of the SPM is based on inserting the PC decompositions
of all stochastic quantities into the NS equations, and applying the Galerkin
procedure to derive governing equations for the individual modes appearing
in these expansions. This results in a system of the form:

∂uk

∂t
+

P
∑

i=0

P
∑

j=0

Mijk(u · ∇)u =−∇pk + ν∇2uk (18)

∇ · uk =0 (19)

for k = 0, . . . , P . Note that the quadratic term involves a convolution sum
involving the multiplication tensor:

Mijk ≡ 〈ΨiΨjΨk〉
〈Ψ2

k〉
(20)

Boundary and initial conditions are also decomposed in a similar fashion. In
particular, for the latter we have: u0(x, t = 0) = ū(x), u1(x, t = 0) = u′(x),
and uk(x, t = 0) = 0 for k = 2, . . . , P .
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SPM relies a fractional step projection scheme in order to integrate the evolu-
tion equations of the stochastic modes. In a first fractional step, we integrate
the coupled advection-diffusion equations:

∂uk

∂t
+

P
∑

i=0

P
∑

j=0

Mijk(ui · ∇)uj = ν∇2uk (21)

for k = 0, . . . , P . An explicit multi-step scheme may be used for this purpose.
For instance, for a second-order Adams-Bashforth scheme we have:

u∗

k − un
k

∆t
=

3

2
Hn

k − 1

2
Hn−1

k k = 0, . . . , P (22)

where u∗

k are the predicted velocity modes, ∆t is the time step,

Hk ≡ ν∇2uk −
P
∑

i=0

P
∑

j=0

Mijk(ui · ∇)uj, (23)

and the superscripts refer to the time level. In the second fractional step, a
pressure correction is performed in order to satisfy the divergence constraints
on the velocity modes. We have:

un+1
k − u∗

k

∆t
= −∇pk k = 0, . . . , P (24)

where the pressure fields pk are determined so that the fields un+1
k satisfy the

divergence constraints in (19), i.e.

∇ · un+1
k = 0 (25)

Combining equations (24) and (25) results in the following system of decoupled

Poisson equations:

∇2pk = − 1

∆t
∇ · u∗

k k = 0, . . . , P (26)

Similar to the original projection method [7], the above Poisson equations are
solved, independently, subject to Neumann conditions that are obtained by
projecting equation (24) in the direction normal to the domain boundary [7,
22].

9



Remarks

(1) One of the key advantages of SPM is that the numerical formulation effec-
tively exploits the fact that the velocity divergence constraints are decou-

pled, which results in a set of P + 1 decoupled pressure projection steps.
Since these steps typically account for the bulk of the computational effort
in incompressible flow simulations, the solution of the stochastic system
can be at essentially a cost of P +1 deterministic solutions. Coupled with
the spectral nature of the stochastic representation, this leads to a highly
efficient stochastic solver, as illustrated in Fig. 1 below.
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Fig. 1. Dependence of the CPU time on the number of modes P in SPM com-
putations of internal, gravity-driven flow under stochastic temperature boundary
conditions. The spatial discretization is on a staggered, finite-difference grid, with
conservative second-order differences. Results with first, second, and third-order PC
expansions are reported, respectively p = No = 1, 2, and 3. Adapted from [29].

(2) By relying an integral formulation, the Galerkin stochastic approach out-
lined above is well suited for essentially any numerical discretization
scheme. Specifically, the approach has been used extensively in conjunc-
tion with finite element methods [12,16–18]; NS computations using spec-
tral element methods [49] have also been reported, as well as upwind
finite-difference schemes [34]. Thus, the latter experiences indicate that
the Galerkin PC formulation naturally overcomes some of the limitations
of linearized or perturbation approaches, which typically face severe dif-
ficulties with non-smooth filtering operations used in upwind schemes.

2.4 Other Navier-Stokes Implementations

PC-based UQ schemes have been applied in simulations of more elaborate
NS formulations, simulations of microfluid systems [10], nearly incompressible
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Boussinesq flows [29], weakly compressible flow at low-Mach-number [28], re-
acting flow [39], as well as fully compressible unsteady flow in a single space
dimension [33].

For brevity, we focus our attention on Galerkin approaches following the devel-
opment outlined in section 2.2, and to multi-dimensional momentum solvers.
Thus, we shall omit from the present discussion 1D compressible flow compu-
tations [33], and reacting flow models [39]. Also omitted are stochastic sim-
ulations of microfluidic systems [10], as the latter incorporate essentially the
same incompressible momentum update as in SPM [25,29].

An immediate, though non-trivial, generalization of the incompressible SPM
concerns weakly-compressible Boussinesq flows. This situation was considered
in [29], which focused on simulation of a stochastic variant of the coupled
system:

∂u

∂t
+ u · ∇u = −∇p +

Pr√
Ra

∇
2u + Prθy, (27)

∇ · u = 0, (28)

∂θ

∂t
+ ∇ · (uθ) =

1√
Ra

∇
2θ. (29)

where θ is the normalized temperature, while Pr and Ra denote the Prandtl
and Rayleigh numbers, respectively. Generalization of the SPM outlined above
to the case of Boussinesq flow is deemed immediate, since the major modifi-
cations involve incorporation of the buoyancy source term in the momentum
equation, and the simultaneous integration of an advection equation for tem-
perature. The structure of the pressure projection steps, on the other hand,
remains unchanged, as the presence buoyancy source terms only affects their
right-hand-sides. Thus, at least in the case of SPM, generalization from in-
compressible to Boussinesq flow requires a straightforward adaptation of the
stochastic scheme.

In contrast, generalization of stochastic incompressible NS solver to compress-
ible zero-Mach-number flows can prove significantly more challenging. Such an
exercise was considered in [28], which focused on extension of SPM to simula-
tion of natural convection in a heated cavity under non-Boussinesq conditions.
The simulations were based on a stochastic variant on the compressible NS
equations in the zero-Mach-number limit [6, 32]:

∂ρ

∂t
=−∇ · ρu (30)

∂(ρu)

∂t
=−∂(ρu2)

∂x
− ∂(ρuv)

∂y
− ∂Π

∂x
+

1√
Ra

Φx (31)
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∂(ρv)

∂t
=−∂(ρuv)

∂x
− ∂(ρv2)

∂y
− ∂Π

∂y
+

1√
Ra

Φy −
1

Pr

ρ − 1

2ε
(32)

∂T

∂t
=−u · ∇T +

1

ρPr
√

Ra
∇ · (κ∇T ) +

γ − 1

ργ

dP

dt
(33)

P = ρT (34)

where ρ is the density, Π is the hydrodynamic pressure, Ra is the Rayleigh
number, ε is the temperature (Boussinesq) ratio, Φx and Φy are the viscous
stress terms in the x and y directions, respectively, Pr is the Prandtl number,
κ is the normalized thermal conductivity, γ is the specific heat ratio, and P (t)
is the thermodynamic pressure [45].

As explained in [28], one delicate aspect of the generalization of SPM to
zero-Mach-number flows concerns enforcement of the mass conservation con-
straints. In the numerical scheme constructed in [28], these constraints lead
to the following decoupled system of elliptic equations for the hydrodynamic
pressure modes:

∇2Πk =
1

∆t



∇ · (ρu)∗k +
∂ρk

∂t

∣

∣

∣

∣

∣

n+1


 , k = 0, . . . , P (35)

with homogeneous Neumann boundary conditions. These equations are thus
subject to the following solvability constraints:

∫

Ω

1

∆t



∇ · (ρu)∗k +
∂ρk

∂t

∣

∣

∣

∣

∣

n+1


 dΩ = 0 (36)

In many situations, particularly in the case of a conservative discretization,
the integral of the divergence term in Eq. (36) may be given as an integral
over known boundary terms, and may thus be evaluated exactly. In particular,
in the case of a domain bounded by stationary solid boundaries, the integral
of the divergence term vanishes identically. On the other hand, the integral
of the second term is significantly more delicate, because the density evolu-
tion equation involves complex combinations of stochastic quantities which,
generally, can only be approximately estimated. Consequently, without spe-
cial care, the solvability constraints may only be approximately satisfied. As
experienced in [28], this situation always led to unstable computations. To
overcome this difficulty, a special procedure for the evaluation of the global
mass conservation constraint was developed in [28]. The procedure ensured
that solvability constraints were satisfied to machine precision, which resulted
in a stable solver.

Note that in the case of a constant density flow, the time derivative in Eq. (36)
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vanishes identically, while the integral of the divergence term also vanishes due
to the global mass (volume) conservation constraint (Eq. 14). Thus, unlike the
case of zero-Mach-number flow, for a conservative discretization the solvabil-
ity conditions of the Poisson equations for the stochastic pressure modes are
immediately satisfied. Consequently, extensions of incompressible solvers to
zero-Mach-number flows should include a suitable treatment of the mass di-
vergence constraints.
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3 PC computations

In this section we review some key concepts for the manipulation and imple-
mentation of stochastic spectral expansions.

3.1 Quadratic products

In their simplest unreduced form, the unreduced NS equations involve quadratic
(convective) non-linear terms. Consequently, the determination of the spectral
expansion of the quadratic product of the form c = ab, where a and b are given
by:

a(ξ) =
P
∑

i=0

aiΨi(ξ) and b(ξ) =
P
∑

j=0

bjΨj(ξ), (37)

is of primary interest. Applying the definition of the projection on the spectral
basis, we obtain the expression for the spectral coefficients of c, namely:

ck

〈

Ψ2
k

〉

≡ 〈cΨk〉 = 〈(ab)Ψk〉 =
P
∑

i=0

P
∑

j=0

aibj 〈ΨiΨjΨk〉 . (38)

Introducing the multiplication tensor Mijk defined in Eq. (20), Eq. (38) can
be rewritten as:

ck =
P
∑

i=0

P
∑

j=0

Mijkaibj. (39)

The above convolution sum is a true Galerkin projection of c onto the subspace
spanned by the Ψk, k = 0, . . . , P , but that higher-order terms, namely those
involving polynomials of order > p are, of course, ignored. It is also interesting
to note that, formally, Eq. (39) suggests that the operation count needed
to determine a quadratic product is essentially O(P 3). However, due to the
sparse nature of M, the operation count is actually much smaller. As further
discussed in section 3.4, taking advantage of the “sparseness” of M is key for
computational efficiency.

One can exploit Eq. (39) to derive expression for the PC expansion of the
inverse of a stochastic quantity. Letting b denote the inverse of a, we have by
definition:

(ab)k =
∑

i

∑

j

Mijkaibj = δ0k (40)
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where δ denote the Kronecker delta. Since the coefficients ai are known, the
above expression can be recast as a system of (P + 1) linear equations in the
unknown coefficients bk, k = 0, . . . , P . A standard linear equation solver can
then be used to solve the system and hence determine the PC expansion of b.

3.2 Higher-order transformations

For many fluid problems of interest, the formulation involves complex physical
models requiring higher-order transformations of spectral quantities. A well-
known example concerns reacting flows, where the governing equations include
quadratic products as well as complex source terms involving higher-order
products, exponentiation, inversion, etc. . . These complex functionals require
suitable spectral estimates, which, generally, may only constitute approximate
Galerkin projections; balancing precision and computation cost is, in these
situations, an important consideration.

3.2.1 Higher-order products

Consider first the ternary product d = abc. One can apply the same Galerkin
procedure used for quadratic products, which in the present case gives:

dl =
P
∑

i=0

P
∑

j=0

P
∑

k=0

Tijklaibjck (41)

where

Tijkl ≡
〈ΨiΨjΨkΨl〉

〈ΨlΨl〉
. (42)

Although T is also sparse, it has a significantly larger number of non-zero
entries than M, and Galerkin evaluation of d requires substantially higher
storage and CPU cost than a quadratic product. In order to reduce these
requirements, an alternative “pseudo-spectral” evaluation approach can be
implemented, based on successive application of the formula for quadratic
products. For instance, d may be estimated using:

dk ≈
∑

i

∑

j

(ab)icjMijk, where (ab)i =
∑

m

∑

n

ambnMmni. (43)

15



The drawback of this approximate factorization is that it may introduce alias-
ing errors. We also note that in general

∑

i

∑

j

(ab)icjMijk 6=
∑

i

∑

j

(ac)ibjMijk 6=
∑

i

∑

j

(bc)iajMijk, (44)

and so using the pseudo-spectral approach the spectral representation of d
depends on the order in which the approximate factorization is applied. How-
ever, if the expansion order p is large enough, one may expect the resulting
errors to be small, as observed in actual computations. Also note that the
same factorization procedure can be applied to higher-order terms, writing for
instance abcd = [(ab)c]d.

3.2.2 Taylor series approach

Let f(a) denote a function of a stochastic quantity a with known PC repre-
sentation. The Taylor expansion of f(a) about the mean of a = a0 is

f(a) = f(a0) +
∞
∑

l=1

(a − a0)
l

l!
f (l)(a0),

where f (l) = dlf/dal. If f is well behaved and the variance of a sufficiently
small, one can expect the Taylor series to converge quickly with l. In this
case, the series can be truncated after the first few terms, requiring only the
estimation of the first powers of ã ≡ a − a0 =

∑P
i=1 aiΨi, using for instance

the pseudo-spectral approach outlined above. However, if the Taylor series
converges slowly, the computation of the PC expansion of ãl, from ãl−1a, may
be plagued by significant errors as l increases, thus restricting the domain of
application for the Taylor series approach.

3.2.3 Simulation approach

A robust means for overcoming the limitation of the Taylor series approach
consists of avoiding approximation of higher powers, instead relying on sam-
pling or simulation to directly determine the PC representation of f(a). Since
the spectral coefficients fi of f(a) are by definition given by 〈f(a)Ψi〉 / 〈Ψ2

i 〉,
one can apply the following sampling procedure to determine fi:

〈fΨi〉 ≈
Ns
∑

s=1

f(a(ξs))Ψi(ξs)w(ξs), (45)

where Ns is the number of samples, and (ξs, ws) are the sample points and
associated weights. Different sampling strategies can be used, including non-
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deterministic sampling (e.g. Monte-Carlo, Latin hypercube, . . . ), quadrature,
and cubature formulas (see section 4). It is emphasized that this approach
only requires the computation of f for different (deterministic) values of its
random argument a(ξ). The principal limitation of this simulation strategy
concerns the number of sample points Ns needed to achieve sufficient accuracy.
Specifically, the computational cost may be prohibitively large in situations
where a large value of Ns is needed to ensure small sampling errors.

3.3 Integration approach

This approach, recently introduced in [11], is based on differentiation of f ,
followed by integration along a prescribed path. In the deterministic case,
and provided that f can be differentiated, f(a) can be computed through the
integration of its derivative g(a) = df/da :

f(a) − f(ã) =

a
∫

ã

gda,

where ã is an arbitrary starting point where f can be evaluated. This idea
can be extended to the stochastic case as follow. First, consider the random
processes:

b = b(s, ξ) =
P
∑

i=0

bi(s)Ψi(ξ),

f = f(s, ξ) =
P
∑

i=0

fi(s)Ψi(ξ),

g = g(s, ξ) =
P
∑

i=0

gi(s)Ψi(ξ),

where s parametrized the integration path across the deterministic space of
PC coefficients, and g is still the derivative of f . The random process b(s, ξ) is
arbitrary selected such that it evolves along the integration path from b = b̃(ξ)
where f(b̃) can be easily evaluated, to b = a(ξ) at the end of the integration.

Assuming that b, f and g are analytic with respect to s, we have

s2
∫

s1

∂f

∂s
ds =

s2
∫

s1

g
∂b

∂s
ds, (46)

and the result of the integration being path-independent. Equation (46) may
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be rewritten as:

P
∑

i=0

Ψi

s2
∫

s1

dfi

ds
ds =

P
∑

i=0

[fi(s2) − fi(s1)]Ψi =
P
∑

i=0

P
∑

j=0

ΨiΨj

s2
∫

s1

gi(s)
dbj

ds
ds. (47)

Projecting onto the PC basis, we obtain for each index k :

fk(s2) = fk(s1) +
∑

i

∑

j

s2
∫

s1

Mijkgi(s)
dbj

ds
ds. (48)

Then, given an integration path such that f(b(s1, ξ)) can be easily evaluated,
and b(s2, ξ) = a(ξ), we obtain

fk(s2) =
〈f(a)Ψk〉
〈Ψ2

k〉
= fk(s1) +

∑

i

∑

j

s2
∫

s1

Mijkgi
dbj

ds
ds. (49)

In practice, the integration path from s1 to s2 is defined as:















b0(s) = a0,

bk(s) = ak
s − s1

s2 − s1

k > 0,
(50)

such that fk(s1) = f(a0) for k = 0 and 0 for k > 0, and fk(s2) = fk(a).
Then, the integration can be performed using standard techniques as long as
the spectral expansion of g, the derivative of f , can be computed along the
integration path.

Though the approach appears to have merely shifted the difficulty in evaluat-
ing the PC expansion of f to that of its derivative, it still enables us to resolve
a wide class of non-linear transformations, such as exponentials, logarithms
and powers of a [11]). Compared with the Taylor series approach, this integra-
tion technique is more costly, due to multiple evaluations of the PC expansions
of g along the integration path. However, numerical tests have shown its effec-
tiveness for situations with large variance of the argument, where application
of the Taylor series approach is limited.

3.4 Computational strategies

An efficient implementation of PC expansions is a crucial step in conversion of
a deterministic code into a stochastic PC-based counterpart. In this section,
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we provide here details on the so-called UQ-toolkit, which comprises a library
of utilities that help streamline deterministic code conversions.

3.4.1 PC constructs

One of the key features in PC implementation concerns the tensor construc-
tion of the multi-dimensional basis functions. For brevity, we illustrate these
constructs using the classical Hermite-based PC expansions.

The multi-dimensional Hermite polynomials are constructed from tensor prod-
ucts of the one-dimensional Hermite polynomials. Let Hi(ξ) denote the 1-D
Hermite polynomial of order i > 0 in ξ. Then the corresponding Ψi(ξ) is given
by:

Ψi(ξ) =
n
∏

j=1

H
α

(i)
j

(ξj), (51)

where α(i) ≡ {α(i)
1 , . . . , α(i)

n } is the multi-index of the polynomial Ψi. The order

of Ψi is pi =
∑n

j=1 α
(i)
j . By convention, α(0) = {0, . . . , 0}, so that Ψ0(ξ) = 1,

while the multi-indices for the first order polynomials are given by:

α(i) = {0, . . . , 0, α(i)
i = 1, 0, . . .} for i = 1, . . . , n, (52)

yielding Ψi=1,...,n = ξi. Polynomials with order 1 < pi ≤ p are typically de-
termined by systematically “looping” over the various dimensions [23], and
this results in an ordered the representation of the Ψ′

is and the corresponding
multi-indices. The ordering scheme is in fact a key underlying feature of all
PC operations.

3.4.2 Construction of the multiplication tensor

Determination of the multiplication tensor involves the evaluation of the ex-
pectation of triple products of the form ΨiΨjΨk. Using the multi-index defi-
nition, we have:

〈ΨiΨjΨk〉=

〈(

n
∏

m=1

H
α

(i)
m

(ξm)

)(

n
∏

m=1

H
α

(j)
m

(ξm)

)(

n
∏

m=1

H
α

(k)
m

(ξm)

)〉

=
n
∏

m=1

〈

H
α

(i)
m

H
α

(j)
m

H
α

(k)
m

〉

, (53)

where we have made use of the statistical independence of the ξ’s. Equa-
tion (53) shows that the multidimensional multiplication tensor can be de-
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termined based on knowledge of the one-dimensional expectations 〈HiHjHk〉.
The latter can be established using symbolic computations or tables (see for
instance [18]), or alternatively using the Gauss-Hermite quadratures [1, 23].
Equation (53) also reveals the origin of the sparseness of M, as it is sufficient
that the 1-D expectation vanishes along one stochastic dimension to have
Mijk = 0.

Taking advantage of the multi-index construction, only the non-zero entries
of the multiplication tensor are computed during a pre-processing stage, and
stored using a sparse format for subsequent use in the computations.

3.5 UQ toolkit

Extension of a deterministic code to incorporate the PC representation of un-
certainty consists of two elementary steps. First, all quantities and fields that
depend on the uncertainty are extended to involve a supplementary index that
corresponds to the single-index representation of the PC basis. The ordering
scheme determined in the multi-index construct is also used for the present
purpose. For instance, in a two-dimensional problem the deterministic discrete
velocity uij, defined at the node (i, j) of a spatial mesh, is extended to uijk

where the two first indices still refer to the spatial location, while k refers to
the polynomial index. In other words, the uncertain velocity at node (i, j) has
for expansion:

uij(θ) =
∑

k

uijkΨk(ξ(θ)). (54)

After this index extension is implemented for all relevant variables, it is nec-
essary to re-interpret all operations involving these quantities. Some of these
operations are not affected by the uncertainty, as spatial differentiation for
instance, and need only to be repeated for all modes 0 ≤ k ≤ P . On the
other hand, require a spectral treatment as discussed in this section 3.1. As
an example, consider the computation of the convective terms u∂u/∂x arising
in the momentum equation. In a first stage, we compute the spatial deriva-
tives ∂ui/∂x = (∂xu)i for all modes. Then, in a second stage, the spectral
coefficients of the convective term, (u∂xu)k, are determined by applying the
multiplication rule in (39), resulting in:

(u∂xu)k =
∑

i

∑

j

Mijkui(∂xu)j. (55)

Note that the operations above involve local grid information, and so can be
easily and efficiently parallelized. Moreover, since the multiplication tensor is

20



sparse and stored in sparse format, it is advantageous to systematically rely
on a subroutine that takes advantage of this feature. For instance in Fortran-
like language, the spectral coefficients of the convective terms of our example
would be obtained through

call prod(u,dudx,ududx)

where u and ududx are two arrays of length P + 1 containing the spectral
coefficients of u and ∂xu respectively, and prod returns the coefficients of
their product in the array ududx. In a similar way, higher-order operations
are also implemented through systematic calls to subroutines contained in the
UQ toolkit.
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4 Non-intrusive formulations

In this section, we discuss an alternative to spectral computations which con-
sists of performing the projection of the stochastic flow solution onto the spec-
tral basis using a set of deterministic solutions. Since this approach does not
require solution of the governing equations for the spectral modes, but needs
only the availability of a deterministic solver, it is termed “non-intrusive,” the
terminology emphasizing the fact that modification of the deterministic solver
is neither required nor performed. By construction, the non-intrusive approach
can also be qualified as a collocation method, as opposed to Galerkin method,
since the projection is performed based on specific realizations or points in the
random parameter space. The non-intrusive alternative is especially attrac-
tive in situations where one wants to propagate and quantify uncertainties in
a complex problem using a deterministic code that should not be modified,
for instance using commercial, legacy or certified codes. Another interesting
feature of the non-intrusive approach is that it naturally circumvents the dif-
ficulties associated with the spectral treatment of high-order non-linearities.

As in the Galerkin method, the starting point of uncertainty quantification and
propagation in the non-intrusive context is the parametrization of the input-
uncertainties. Again, we assume that the input random data are parametrized
using a set of n independent and normalized Gaussian variables ξ(θ) = {ξ1(θ), . . . , ξn(θ)},
and are interested, in particular, in the determination of the velocity modes
uk, k = 0, . . . , P . The orthogonality of the spectral basis provides the following
expressions for uk,

〈

Ψ2
k

〉

uk = 〈u(ξ(θ))Ψk(ξ(θ))〉 =
∫

u(ξ)Ψk(ξ)pdf(ξ)dξ, (56)

where, using the independence of the ξi’s,

pdf(ξ) =
n
∏

i=1

exp[−ξ2
i /2]√

2π
. (57)

Equation (56) shows that the velocity modes can be determined through the
computation of the integrals on its right-hand side. Different means can be
used to estimate these integrals, leading to the methods outlined below.

4.1 Stochastic methods

The first class of methods discussed here is based on stochastic sampling strate-
gies. The simplest of these methods is the Monte-Carlo (MC) approach (see
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e.g. [30]), which relies on an unbiased sampling of the random parameter space.
In unbiased MC, The integrals are computed using:

∫

u(ξ)Ψk(ξ)pdf(ξ)dξ = lim
Nmc→∞

1

Nmc

Nmc
∑

m=1

u(ηm)Ψk(ηm), (58)

where the ηm are pseudo-random vectors, with independent components, gen-
erated following the distribution of ξ given in Eq. (57). The flow has to be
solved for each realization of the uncertain parameters, as prescribed by ηm.
It is known that the convergence rate for unbiased sampling is 1/

√
Nmc in the

asymptotic limit Nmc → ∞, so the precision of the MC projection method is
inherently limited for large problems where the computation of individual real-
izations are expensive. More complex (biased) stochastic sampling techniques
can be used to improve the convergence rate. There is a vast literature on im-
provement of MC sampling strategies, including variance reduction techniques,
stratified sampling, Latin-Hypercube sampling, and most of these techniques
are readily applicable to the integral in Eq. (56). In [29], we performed a non-
intrusive numerical experiment for a natural convection flow inside a closed
cavity, involving n = 6 uncertain parameters, and using a Latin-Hypercube
sampler (LHS) [37]. The comparison with the Galerkin computation for the
same flow, clearly put in evidence the much lower efficiency of the LHS non-
intrusive approach both in terms of CPU cost and accuracy. Note, however,
that for problems with large number, n, of stochastic dimensions, the Galerkin
approach may face limitations due to memory requirements, while in con-
trast the computation of individual realizations is insensitive to the number
of stochastic dimensions involved in the underlying uncertainty sources. The
main limitation of non-intrusive methods appears to be due to the number of
realizations needed to properly sample the parameter space. Note also that
different realizations of the flow are independent and can be computed on par-
allel; for example, in [29] a 64-processor machine was used to take advantage
of this feature.

4.2 Deterministic methods

In problems with a moderate number of stochastic dimensions, it may be
advantageous to apply a deterministic approach to compute the integrals in
Eq. (56), since deterministic methods usually exhibit greater flexibility in rate
of convergence and accuracy control. This section discusses two possible de-
terministic methods.
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4.2.1 Gauss-type quadratures

For n = 1, Eq. (56) can be written as:

〈

Ψ2
k

〉

uk =

+∞
∫

−∞

u(ξ)Ψk(ξ)
exp(−ξ2/2)√

2π
dξ. (59)

Using the Gauss-Hermite (GH) quadrature formula [1], the integral can be
estimated using the finite sum:

〈

Ψ2
k

〉

uk ≈
Nq
∑

i=1

u(xi)Ψk(xi)wi, (60)

where the (xi, wi), i = 1, . . . , Nq, are the Gauss-Hermite quadrature points
and weights. This formula is exact for polynomial integrands with degree
≤ 2Nq − 1. The 1D formula can be easily extended to multidimensional
situations (n > 1) through a straightforward tensor product extension. This
strategy was used in [29] to perform a deterministic non-intrusive projection
for the same flow problem mentioned above (n = 6). For this test case, it pro-
vided velocity modes that are in excellent agreement (same level of accuracy)
with the Galerkin computations. In terms of CPU cost, the GH method was
more expensive that the Galerkin solution. Specifically, when the Galerkin
computation is optimized such that the corresponding CPU cost scales essen-
tially as P -times the CPU cost of a deterministic solution, where P is the
dimension of the stochastic basis, it is possible to obtain a simple estimate
of the relative cost between Galerkin and non-intrusive GH methods. Fig. (2)
provides this estimate for different values of n and p. The plot shows that the
GH approach becomes impractical for high dimensional problems, because of
the number of realizations that scales as Nn

q . This “curse” of dimensionality
is a well know limitation of quadrature formulas, and different “sparse” alter-
natives designed to maintain precision for high dimensional integration have
been proposed in the literature. In the following section, we discuss one of
these approaches, which has been applied in the context of UQ in [21, 35].

It is interesting to note that Gauss-type quadratures are also available (e.g. see
[1]) for most classical basis functions used in generalized PC decompositions
(section 5). Thus, the applicability of Gauss-type quadratures extends beyond
the classical Wiener-Hermite chaos.

4.2.2 Sparse cubature

The curse of dimension of the tensor Gauss-type quadrature formulas can be
circumvented using coarser quadratures, which can still provide exact esti-
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Fig. 2. Evolution with the number of stochastic dimensions n and expansion order p,
of the ratio of CPUS, the CPU cost of the Galerkin computation (assuming a linear
scaling with the basis dimension P + 1) with CPUNI the CPU cost of non-intrusive
projection using the tensor Gauss-Hermite formula.

mates in the same subspaces as the multi-dimensional Gauss-type quadra-
ture [40–42]. These coarse formulas, known as cubature rules, are based on
algorithmic constructions such as the Smolyak scheme [43,46], and result in a
number of cubature points that could challenge the efficiency of the Galerkin
computations for large n. As an example, we provide in Fig. (3) the number of
cubature points necessary for an exact integration of polynomial functions of
order No, for an increasing number of dimensions Nd = n. To our knowledge,
such cubature formulas have not been tested yet for the propagation of uncer-
tainties in fluid flows governed by the Navier-Stokes equations. However, some
experiments have been successfully performed in the context of ground-water
flows governed by elliptic stochastic equations [21, 35], and one would in fact
expect that a similar success in applications to NS problems.
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Fig. 3. Example of the evolution of the number cubature points Nmin needed to
achieve exact integration for polynomial integrands of degree No, and different num-
ber of stochastic dimensions Nd = n, using the Smolyak construction scheme. This
evolution has to be compared with the Gauss-type tensor formula where Nmin scales
with (No + 1)n/2n.
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5 Generalized PC

Classical PC representations are based on a well-established theoretical foun-
dation that takes advantage of the fact that the Hermite chaos is complete
and orthogonal with respect to the Wiener measure [4]. In particular, Wiener-
Hermite expansions are well suited when representing random data corre-
sponding to Gaussian variables and processes.

Note, however, that it is possible to apply alternative orthogonal basis func-
tions in PC expansions. This section outlines possible alternatives, and briefly
addresses the question concerning their suitability and whether specific ad-
vantages may be derived from their implementation. The discussion focuses
exclusively on chaos decompositions corresponding to continuous measures,
and considers separately the cases of local and global basis functions.

5.1 Global Basis Functions

A general construction that captures several possible choices of PC represen-
tations is the so-called Wiener-Askey family, originally developed by Askey
and Wilson [3] and first introduced in the UQ context by Xiu and Karni-
adakis [48]. In addition to the Hermite chaos, the Wiener-Askey family in
particular includes Laguerre and Jacobi basis functions. The latter are or-
thogonal polynomials in random variables that follow gamma and beta distri-
butions, respectively, orthogonality being naturally interpreted with respect
to the corresponding measures.

From an implementation perspective, the computational framework of the UQ
toolkit outlined above enables the user to navigate freely between different
basis representations. Most of the effort associated with a change of basis
concerns the construction of the multiplication tensor(s), and procedures for
other nonlinear transformations in case they are not based directly on the
latter. Thus, this effort is limited to pre- and post-processing, with little or no
change to the structure of the stochastic code. This is another key feature of
the UQ toolkit.

It is also interesting to note, much like the Hermite case, PC representations
based on the Laguerre and Jacobi polynomials are expected to exhibit expo-
nential convergence as the order of the corresponding expansion is increased.
Such convergence behavior is in fact guaranteed whenever certain smoothness
conditions are satisfied [5]. In such situations, selection of a specific basis func-
tion representation would primarily be based on convenience, and to a lesser
extent on the “efficiency” of the presentation –since the latter is generally not
known a priori.
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In their original development [48], Xiu and Karniadakis provided several ex-
amples in which the input random data have pdf’s that correspond to those
of the random variables of basis functions belonging to Wiener-Askey chaos.
They show through computational examples that it can be more advanta-
geous to select a basis representation whose random variables have a similar
distribution as the input random data. This is especially the case when the
distribution of the input data are such that exponential convergence is imme-
diately lost when other basis function representations are selected.

On should note, however, that a rapidly convergent spectral representation
of the input random data may not always constitute a key consideration in
the selection of a basis function representation. To support this assertion, one
observes that PC representation generally provides a complete functional rep-
resentation of the response of the stochastic solution in terms of the random
variables. Specifically, one can readily determine particular solutions corre-
sponding to specific realizations of the random variables. Consequently, hav-
ing determined the response surface starting from given random input data,
one can immediately determine the statistics of the solution for “new” ran-
dom input having different statistics, so long as the new data “lives” on the
same portion of the probability space as the former. It should be emphasized
that such transformation does not require that the solution be recomputed
using the new random input, as it can be readily determined using spectral
projections or alternatively via sampling or collocation. Sampling or colloca-
tion approaches are quite suitable for this purpose, since the associated costs
are, for most CFD problems of interest, substantially smaller than those re-
quired to determine the original stochastic solution (in other words, for large
non-linear problems, the cost of uncertainty propagation is much larger than
that of sampling the stochastic solution). Thus, it appears to the authors that,
an approximate representation of random input data may, in many cases, be
efficiently corrected in post-processing stages.

Beyond matters of computational convenience, and of representation of stochas-
tic inputs, it is generally difficult to assess the impact of the basis function
representation on the efficiency of the propagation computations. This is the
case because, for complex nonlinear problems, generally little is known a pri-

ori about the statistics of the solution, and the relationship between these
statistics and those of the random inputs. On the other hand, if the statistics
of the solutions are known or constrained, one may attempt to take advantage
of this knowledge by selecting a basis function representation that efficiently
captures the known or constrained behavior, appropriately approximating the
random inputs using a few elements of this basis, and later correcting for the
approximation through post-processing.

An additional complication that has so far received little attention concerns
the case where the stochastic solution depends steeply or discontinuously on
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the random inputs. In such situations, one would expect that a spectral rep-
resentation in terms of global basis functions would exhibit severe difficulties.
This topic is addressed in the section below, which shows that wavelet-based
decompositions may be effective in addressing some of these difficulties.

5.2 Local Basis Functions

Uncertainty propagation may be especially challenging in cases where random
inputs include critical parameters or bifurcation points. In such situations,
the representation of the flow dependence on the uncertain parameters us-
ing global polynomial basis may be impractical because of discontinuities or
insufficient smoothness along the stochastic dimensions. Specifically, the ex-
ponential convergence rate may be lost, and Gibbs phenomena may result
in large errors or even global breakdown of the solution. To overcome these
drawbacks, local expansions have been proposed in [26,27]. These expansions
use Multi-Wavelets (see [2]) basis consisting in piece-wise continuous multidi-
mensional polynomials.

For zero-order multi-wavelets (MW), one obtains a Wiener-Haar expansion
which is a piece-wise constant approximation of the uncertain flow [26], i.e. it
provides local averages of the flow over sub-domains of the uncertain parameter
space, whose “volumes” are controlled by the resolution level. As the resolution
level increases, the flow is averaged over smaller and smaller portions of the pa-
rameter space, thus allowing convergence to the exact response surface. In [26]
an example is provided for the case of stochastic Rayleigh-Bénard instability
in a rectangular domain, the input uncertainty essentially corresponding to a
stochastic Rayleigh number which assumes both subcritical and supercritical
values. The numerical experiments showed that the (global) Wiener-Legendre
expansion was not able to converge to the correct solution, and that the oscil-
latory character of the polynomials leads to unphysical predictions when the
expansion order is increased. On the other hand, the Wiener-Haar computa-
tions provide robust estimates which converged towards the exact stochastic
solution as the number of refinement levels increased.

The improvement in robustness and stability provided by MW expansions is
achieved at the cost of a lower convergence rate, the stochastic errors now
being controlled by the polynomial order (p-convergence) and the refinement
level (h-convergence). Also the dimension of the spectral basis dramatically
increases with the resolution level and polynomial order, especially for prob-
lems with a large number of stochastic dimensions n. However, the common
situation concerns a smooth dependence of the flow over large portions of the
parameter space, where high-order expansions are well suited, separated by
localized steep/discontinuous variations, where the robustness of low order
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expansions highly desired. Thus, an optimal, non-global representation would
involve high-order polynomial expansions over large sub-domains of the pa-
rameter space, where p-convergence is attractive, and low-order expansions in
regions of steep/discontinuous variation, where h-convergence is highly effec-
tive. This ideal picture is similar to the spatial spectral-element discretizations
strategies, the discretization being now implemented in the space of random
data. Since the behavior of the stochastic solution is generally not known a pri-

ori, an adapted mesh of the parameter space can not be determined before the
computations are performed. Thus, automatic refinement strategies are sought
in order to tune the local resolution level and the polynomial order. Most of
the techniques developed for Automatic Mesh Refinement (AMR) can in prin-
ciple be applied or adapted for the present purpose. For instance, in [27] an
automatic procedure, involving an a priori error estimator based on the local
MW expansion, was designed to determine the need for local stochastic re-
finement. Compared to spatial AMR techniques, one observes that refinement
of the random parameter space is easier to handle since solutions over sub-
domains can be obtained independently. This features substantially simplifies
data management, and allows for straightforward parallel implementations.

30



6 Outlook

As highlighted above, various implementations of PC representations have
been recently applied to the development of stochastic NS solvers. These de-
velopments have been in large part motivated by the promise of achieving
accurate representations of the impact of uncertain input data, at efficiency
levels that far exceed those of MC computations. This review has, in particu-
lar, identified various areas of recent progress.

The use of PC-based representations for stochastic NS computations is still
a developing field. There is, consequently, a large potential for substantial
advances. Based our own recent experiences –and consequently biases– we
conclude with a brief outline of some of the corresponding opportunities and
challenges:

(1) The development of flexible and robust computational libraries for accu-
rate and efficient evaluation of PC transformation can be regarded as an
essential tool for the construction of stochastic PC-based stochastic codes.
Briefly, these libraries have enabled efficient transformation of determin-
istic codes into stochastic codes. This transformation, however, requires
user intervention, primarily to replace deterministic operations with the
corresponding functional calls into the stochastic library. An interesting
concept worth pursuing consists of an “automating” transformation, in
which deterministic operations would be replaced by stochastic counter-
parts at essentially compilation or during run time. The development
of software tools that would enable such key capabilities appears to be
present a key opportunity that would benefit and accelerate a wide range
of investigations.

(2) One of the challenges facing PC representations arises in situations in
which both the deterministic and stochastic systems exhibit limit cycle
oscillations (LCO). To illustrate these challenges, on can consider the
idealized case of a linear oscillator having a random, say Gaussian, fre-
quency. The exact solution of such an idealized system, which can be
readily determined, indicates that at large time the solution exhibits a
random phase that is uniformly distributed over the unit circle. An im-
mediate dilemma facing such situations concerns the selection of a basis,
as those based on continuous random variables generally face severe dif-
ficulties in providing efficient representations of both the input and the
output. Much needed are robust means to overcome such difficulties.

(3) Another set of challenges concerns situations where one is only interested
in assessing the impact of uncertainty on specific observables or compo-
nents of the solution. These are in many ways akin to the problems just
mentioned. For instance, in problems admitting LCOs, one may only be
interested in stochastic amplitudes and frequencies, but not in relating
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the phase of different stochastic realizations. The development of compu-
tational PC methods enabling such “projections” appears to be a worthy
endeavor.

(4) Computational experiences obtained using PC representations in un-
steady NS computations have so far been quite encouraging. In partic-
ular, efficient schemes have been developed exhibiting superior conver-
gence characteristics. On the other hand, theoretical results concerning
the behavior of the systems of stochastic equations resulting from PC
representations of stochastic NS equations are lacking. Of particular in-
terest would be the pursuit of rigorous results concerning the stability of
such systems of stochastic equations and, if necessary, numerical methods
to stabilize the corresponding computations.

(5) Recent experiences with wavelet-based decompositions in stochastic NS
computations have pointed to the potential of constructing highly-efficient,
accurate and robust UQ schemes. While experiences gained so far are
quite limited, they indicate the promise of local refinement techniques as
well as adaptive order methods in which the order of PC expansions is
also adapted together with local refinement of random parameter space.
These methods are yet to be fully exploited in the context of stochastic
NS computations.

Finally, we recall that the development UQ methods for CFD computations
has in many cases been motivated by the increasingly-elaborate, underlying
physical models, typically including a large number of uncertain parameters.
The impact that UQ schemes can bring to such situations is in large part con-
ditioned on a suitable representation of the uncertainty in the model inputs.
Though the issue of representation of uncertain inputs has not been central
to the present review, it should evidently not be overlooked during implemen-
tations. This may represent an especially delicate task in the case of complex
models, which may incorporate uncertain, possibly correlated, data gathered
from different experiments, observations and/or simulations.
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[25] O.P. Le Mâıtre, O.M. Knio, H.N. Najm, and R.G. Ghanem. A stochastic
projection method for fluid flow. i. basic formulation. Journal of Computational

Phyics, 173:481–511, 2001.
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