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Abstract. A stochastic projection method (SPM) is developed for quantitative propagation of
uncertainty in compressible zero-Mach-number flows. The formulation is based on a spectral rep-
resentation of uncertainty using the Polynomial Chaos (PC) system, and on a Galerkin approach
to determine the PC coefficients. Governing equations for the stochastic modes are solved using a
mass-conservative projection method. The formulation incorporates a specially tailored stochastic
inverse procedure for exactly satisfying the mass-conservation divergence constraints. A brief vali-
dation of the zero-Mach-number solver is first performed, based on simulations of natural convection
in a closed cavity. The SPM is then applied to analyze the steady-state behavior of the heat transfer
and of the velocity and temperature fields under stochastic non-Boussinesq conditions.
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1. Introduction. Low-Mach-number flows arise in a wide class of important
applications, including thermal transport and management as well as burners and
combustors. In many cases, these applications rely on complex physical models that
involve inexact knowledge of system parameters or operating conditions. This effort
aims at the development of uncertainty propagation and quantification methods for
zero-Mach-number compressible flows.

In a previous effort [16], a stochastic projection method (SPM) for incompressible
flows was developed, based on spectral representation of uncertain parameters in
terms of the Polynomial Chaos (PC) system [27, 1, 3, 22, 23, 5, 4, 11]. In subsequent
work [15], the physical model was extended to Boussinesq flow, and the stochastic
formulation was generalized in order to accommodate both random parameters as well
as uncertain model data corresponding to a random process. The latter is modeled
in [15] as a Gaussian process, which is efficiently represented in terms of the Karhunen-
Loeve expansion [20].

The objective of the present effort is to generalize the stochastic Boussinesq
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scheme in [15] to a stochastic zero-Mach-number solver. To illustrate the develop-
ment, we focus on the same physical setup introduced in [15], namely on natural
convection in a closed cavity. Specifically, the problem consists of a square or rect-
angular cavity with adiabatic horizontal boundaries and differentially but uniformly
heated vertical walls (e.g. [6, 2, 18, 17, 19]).

However, unlike the Boussinesq analysis in [15], the assumption of weak tem-
perature difference is no longer invoked. In order to adequately address the present
setting, in section 2 a zero-Mach-number physical model [21, 19, 25, 14] is introduced.
A stochastic variant of the deterministic problem, first introduced in [15], is also used.
As summarized in section 3, it consists of treating the cold wall as having a uniform
temperature and imposing a stochastic temperature distribution on the hot vertical
boundary. The zero-Mach-number stochastic solution scheme is then constructed.
As outlined in section 4, the construction combines a PC representation of random
variables with a mass-conservative [25] projection scheme. In section 5, a brief vali-
dation study of the stochastic solver is performed, based on comparing the resulting
predictions with available results from the literature. The scheme is then applied in
section 6 to analyze the behavior of steady-state heat transfer and of the velocity
and temperature fields within the cavity under stochastic, non-Boussinesq conditions.
Major conclusions are summarized in section 7.

2. Deterministic System. As mentioned in the introduction, the physical
setup used is identical to the one in [15]. Specifically, we consider a square 2D cavity
of side L, filled with a variable-property Newtonian fluid of density j, molecular vis-
cosity fi, thermal conductivity %, and temperature 7. A Cartesian (Z,§) coordinate
system is selected with § pointing vertical and Z horizontal. The two horizontal walls
of the cavity are assumed adiabatic, while the left and right vertical walls are main-
tained at uniform temperature, Ty and T, respectively. The mean temperature Ty is
defined as Ty = (T) + 1) /2. Tildes are used to denote dimensional quantities and
the subscript 0 is used to denote reference quantities. Using the mean temperature,
and the temperature difference between the hot and cold walls, AT = T}, — T, we
introduce the Boussinesq ratio e = AT /2Ty.

2.1. Zero-Mach-Number Model. A zero-Mach-number [21, 19, 25, 14] flow
model is used to describe the dynamics of the heated cavity. In this limit, the action
of acoustic waves is ignored and the pressure is decomposed into a hydrodynamic
component II(x, ) and a spatially uniform thermodynamic component P(t). Follow-
ing these assumptions, we will thus be concerned with the numerical solutions of the
following set of normalized governing equations:

op
ou d(pu?) O(puv) Ol 1
2.2 — = — e
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23) Ov _ _Opw) 9(pv?) OM 1 5 1lp-1
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2.4 & e VT4 ———V - (V) + L =L
(24) ar Ve YT
(2.5) P=pT

where p is the density, u = (u,v) is the velocity field, IT is the hydrodynamic pressure,
Ra = gBATL? /iy is the Rayleigh number, 3 is thermal expansion coefficient, § is
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the gravitational acceleration, ®, and ®, are the viscous stress terms in the z and
y directions, respectively, Pr = p/dq is the Prandtl number (here equal to 0.7),
Kk = K/Ro is the normalized thermal conductivity, v is the specific heat ratio, and
P(t) is the thermodynamic pressure [19]. Variables are normalized with respect to
the appropriate combination of the reference temperature Ty, density fo, length L,
and velocity Vo = ﬂg\/ﬁ/fh

The viscous stress terms are given by the divergence of the viscous stress tensor,

(2.6) = g [(V x w) + (V x u)7]

where p = [i/jip is the normalized viscosity. In the computations, the viscosity and
thermal conductivity are assumed to be constant, or to depend on temperature ac-
cording to the Sutherland law [19]:

1+ Sk 32 1 +S
ok Ty =T3/2_T°1
T+SH ) u( ) T+SH

where S, = 0.648 and S, = 0.368. For brevity, most of the results presented below
correspond to the constant property case.

The above system of equations is supplemented with no-slip boundary conditions
on velocity, while adiabatic conditions (0T'/0y = 0) are used on horizontal walls. For
the left and right vertical boundaries, Dirichlet conditions on temperature are used,
respectively T'= 1+ € and T' = 1 — €. Initially, the fluid in the cavity is assumed to
be in a state of rest, with uniform temperature (T' = 1) and pressure (P = 1). The
unsteady system of equations is integrated in time till steady conditions are reached.

(2.7) K(T) = T3/?

2.2. Boussinesq Limit. In the Boussinesq limit ¢ — 0, substantial simplifi-
cation of the above system can be implemented. Specifically, variation of the ther-
modynamic pressure and density can be essentially ignored, and the velocity field
can be treated as divergence free [19]. In particular, the latter simplification enables
the development of an incompressible flow solver, whose deterministic and stochastic
forms are extensively discussed in [16, 15]. In the following section, we shall focus on
extension of the stochastic Boussinesq solver [15] to zero-Mach-number flows under
non-Boussinesq conditions.

3. Stochastic Formulation. As in [15], we consider the effect of “random”
fluctuations on the cold wall. The normalized mean wall temperature at z = 1 is
expressed as:

(3.1) N(y)=T(e=1y)=T+T'(y) =1-e+T'(y)

Using angle-brackets to denote expectations, we have < T} >=T, = 1 —¢, i.e. T' has
vanishing expectation and the mean temperature along the cold wall is independent
of y and corresponds to Tt.

The random component is assumed to be given by a Gaussian process which
is characterized by its normalized variance %, and an auto-correlation function, K,
given by:

(3.2) K(y1,y2) =< T'(y1)T" (y2) >= €*o7-exp [—|y1 — y2|/Lc] -

where L. is the normalized correlation length. K can be expanded in terms of its
eigenvalues, \;, and eigenfunctions, f;(y), using [11, 10, 9]:

(33) Kyi,y2) = €D Nifilya) filya)-

=0



4  0.LE MAITRE, M. REAGAN, B. DEBUSSCHERE, H. NAJM, R. GHANEM, O. KNIO

and T" can be accordingly expressed in the Karhunen-Loéve (KL) expansion as [20]:
oo

(34) T'(y) =€ > VAifiw)é
i=0

where the ;’s are uncorrelated Gaussian variables having vanishing expectation and
unit variance.

As discussed in [11, 15], an analytical expression for the kernel in Eq. (3.2) is
available:

( coswn(y —1/2)]

if n is even
1 sin(wp)
2 * 2wy,
(3.5) fn(y) =4
sinfony = Y2 461 5 odd
1 sin(wy)
L 2 2w,

where

2L
3.6 Ap = 02—

(3.6) Ty T (wnL,)?

and w,, are the positive (ordered) roots of the characteristic equation:
(3.7) [1 — Lewtan(w/2)] [Lew + tan(w/2)] = 0.

Since the first positive root of Eq. (3.7) is wg = 0, corresponding to fo = 0, Eq. (3.4)
may be rewritten as:

(3.8) T'(y) = ezgz-ﬂfi(y).

In numerical tests, the KL expansion is truncated, and the temperature fluctuation
is approximated as:

Nkr
(3.9) T =¢ Z &V fiy),
i=1

where Nk, is the number of modes retained in the expansion. The errors associated
with this truncation have been extensively analyzed in [15]. In the simulations below,
we take advantage of the results of this prior analysis for the selection of the truncation
parameter.

4. Solution Scheme. The solution scheme introduced below is a generalized
form of the scheme developed in [16, 15]. Briefly, the same spectral stochastic repre-
sentation of solution is adopted, based on the PC representation of field variables. This
spectral representation is then inserted into the governing equations and a weighted
residual approach is used to derive governing equations for the mode coefficients in
the PC expansion. One fundamental difference between the present situation and
that tackled in [15] arises due to the fact that higher order non-linearities arise in
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the present set of governing equations whereas only second-order non-linearities are
present in Boussinesq flow. Additional means are required to estimate the moments
corresponding to these higher order non-linearities. An additional, more delicate,
complication is that these higher order non-linearities appear in stochastic divergence
constraints. As shown below, this necessitates the introduction of a specially tailored
procedure in order to ensure that the corresponding solvability constraints are exactly
satisfied.

4.1. Spectral Stochastic Representation. The PC is illustrated for a generic
field variable, ((x,t,&), which is decomposed according to:

P
i=0
where &€ = &1, ...,&N,,, the (; are (yet to be determined) deterministic “coefficients”,

¥,; denote the Polynomial Chaos [27, 1, 20], while P + 1 is the total number of
modes used in the spectral expansion. The ¥; are multi-dimensional orthogonal
Hermite polynomials of the uncorrelated Gaussians [11]. Consistent with the notation
introduced in [15], we shall denote by No the order of polynomial expansion.

We rely on Eq. (4.1) to form representations of the thermodynamic pressure field
as well as all field variables. For the purpose of computational convenience, however,
the original form of the governing equations is first modified by differentiating the
equation of state with respect to time, and combining with the energy equation. The
resulting equation system is thus expressed as [25, 14]:

9 1P 1 1
4.2 9 _ %y VT = —— V- (kVT
(4.2) o ~T ot T (pu v Prv RaV (rV )>
1 1
(4.3) Bt =7 1
Jo fdQ
ou  O(pu®)  O(puv) Ol 1
(44) 5 = o gy o T vmale
(45) @__B(puv) _8(p1)2) _8_H+ 1 _ip_]-
' ot Oz Oy Oy  Ra ” Pr 2
P
4.6 T=—
(4.6) p

As in [24], the evolution equation for the thermodynamic pressure has been derived
by enforcing global mass conservation over the whole domain.

Governing equations for the unknown expansion coefficients are obtained using a
weighted residual approach, based on inserting the PC expansion into the modified
system above, and taking the inner product with the PC basis [11, 16, 15]. Taking
advantage of the orthogonality of the ¥;’s, we formally obtain:

opr
(4.7 Bt = Hi

OPy,

(4.8) o

=G
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and the subscripts & refers to the mode index. The subsecript notation denoting mode
indices is used both for variables and experessions; in the latter case, we have

((£)T)

= ")

where (£) denotes a generic expression.

4.2. Boundary Conditions. The weighted residual procedure is also used to
derive boundary conditions for the mode strength. Specifically, the PC decomposition
is also introduced into the corresponding expressions, and orthogonal projections are
used to derive boundary conditions for the velocity and temperature modes. We
obtain:

(4.16) u,=0, k=0,...,P VY € 012
(4.17) %—7;=0, k=0,...,P fory=0,andy=1
(4.18) To(x =0,y) =1+e, To(z=1,y)=1—c¢
(419) Tp(z=0,9)=0, Ti(z=1,9)=e/Arfuly) fork=1,...,Nky
(4.20) T(z=0,y)=Tr(z=1,y) =0 for k > Nkr,

Here Q =[0,1] x [0, 1] denotes the computational domain, and 92 is its boundary.

4.3. Solution Method. The solution scheme is adapted from the variable den-
sity projection method developed in [25, 14]. For spatial discretization, we rely on
a uniform, Cartesian, staggered grid with IV, and N, cells in the 2 and y directions
respectively. Velocity components are specified at cell edges, while scalar variables
are defined at cell centers. Second-order conservative centered differences are used to
approximate spatial derivatives.



NATURAL CONVECTION UNDER STOCHASTIC CONDITIONS 7

For the present setup, an explicit time integration scheme proves suitable. We
use the second-order Adams-Bashforth scheme to update the density field and ther-
modynamic pressure, according to:

3 1

(4.21) Pt = pit + At (57{;; - 57{;1) , k=0,...,P
-—=n -n 1

(4.22) Py =Py + At (ggf? - 59:?_1> , k=0,...,P

where At denotes the time step and superscripts refer to the time level. Using the
updated density field and thermodynamic pressure, the temperature is updated using
the equation of state:

—\ n+1
(4.23) Tt = (5) , k=0,...,P
P/k

Next, we integrate the pressure-split momentum equation using;:

1
(4.24) (pu)y = (pu)i + At (gz\,’,? - 5/\?,:”1) , k=0,...,P
* n 3 n 1 n—1
(4.25) (p0)i = (o) + At (308 —501") k=0, P

As in the SPM introduced in [16, 15], the pressure field is then obtained by inverting
the following decoupled elliptic systems for the pressure modes:

n+1
] , k=0,...,P

1 Opk
4. VZ =—|V- i St

with homogeneous boundary Neumann conditions on all the modes. In Eq. (4.26),
the time derivative is obtained from the second-order difference:

n+1 n—+1 n—1

T i S
At ’

Op

(4.27) o

k=0,...,P

A pressure correction step is then implemented in order to enforce local continuity
constraints:

I

(4.28) (pu)*t = (pu)f — At% , k=0,...,P
11

(4.29) (o)™ = (pv)f — At%—y’“ , k=0,...,P

and the updated velocity field is finally obtained from:

n+1l __ (pu)n-l—l _
(4.30) ul _( ) k=0,...,P

n+1
(4.31) ot = ((p,jQH ) . k=0,...,P
k
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4.4. Galerkin and Pseudo-Spectral Evaluation of Non-Linear Terms.
Unlike the system of equations appearing in the Boussinesq limit, the above system
involves various non-linear combinations of stochastic quantities. The latter include
quadratic and higher-order products, as well as inverse functions involving tempera-
ture or density.

For quadratic products, the weighted residual approach can be easily implemented
in its true Galerkin form. For instance, the product of ¢ = ab of two stochastic
quantities @ and b can be directly evaluated using [16, 15]:

P P
(4.32) Cp = ZZ Cijkaibj , k= 0, . ,P

=0 j=0
where C;j), is the (sparse) tensor given by:

(V;0;0)

(4.33) Cun = =gy

for 0 <i,j,k < P.

For cubic and higher order products, the Galerkin procedure becomes compu-
tationally cumbersome and inefficient. On one hand, it requires the evaluation and
storage of higher-rank tensors. While still possible, these tensors are generally less
sparse than Cjj, resulting in higher storage and CPU requirements.

In order to avoid the above drawback, a pseudo-spectral approach is developed for
non-linear expressions [13]. For product expressions involving more than two stochas-
tic quantities, we resort to repeated applications of “binary” Galerkin evaluations.
For example, for the triple product d = abc, a two step approach is utilized, where
we first compute d' = ab using Eq. (4.32), and then apply the same formula to obtain
d = d'c. This approach is immediately generalized to products involving an arbitrary
number of stochastic quantities.

The only remaining non-linear expressions involve inverse operations (of temper-
ature or density). Unless otherwise noted, these expressions are approximated using
a truncated Taylor series expansion around the mean of the stochastic quantity. For
instance, the inverse 1/a of a stochastic quantity a = zf;o a;¥; is approximated as:

(4.34)

SN
1R
|
|

1
2 %(a—ao) + a—g(a—ao)2 - a—g(a—ao)3 +--
where the higher order exponentiations are evaluated using the pseudo-spectral ap-
proach just introduced.

Note that, as expected, the pseudo-spectral evaluation of stochastic quantities
introduces aliasing errors. When the spectral representation is sufficiently resolved,
however, these errors do not degrade the spectral convergence of the scheme. This
claim may be verified by systematic refinement of the representation, as performed
for instance in [15]. In the present computations most of the common operations
involving stochastic quantities (including those outlined above) are evaluated using a
UQ toolkit that contains subroutines for individual operations [8, 13].

4.5. Pressure Solvability Constraints. In the development of the above stochas-
tic solver, one unanticipated difficulty arose during the enforcement of stochastic di-
vergence constraints associated with the pressure Poisson equation. As reflected in
Eq. (4.26), the pressure modes are obtained as the solution of Poisson equations with
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homogeneous Neumann conditions. These equations are thus subject to the following
solvability constraints:
6 n+1
P Q=0

V- (pu)i + Bt

(4.35) /Q Ait

For a closed domain with rigid boundaries, the divergence term appearing in the
integral vanishes identically, both in the continuous limit and for the present staggered
discretization. Thus, the only remaining concern is the annihilation of the second
term, in other words exact enforcement of global mass conservation over the entire
domain.

Unfortunately, the right hand side density evolution equation (4.7) involves com-
plex combinations of stochastic quantities which, as mentioned earlier, are only ap-
proximately estimated. Consequently, without special care, the solvability constraints
could only be approximately satisfied. Even though errors associated with solvability
constraints were generally minute, these always led to the blow-up of the computa-
tions.

In order to overcome these difficulties, special care in the evaluation of the thermo-
dynamic pressure source term was implemented. The procedure is based on rewriting
Eq. (4.13) as:

(4.36) TG6=S
where G refers to the stochastic quantity with coefficients (Gy, ..., Gk),
1
. = = Q0
(4.37) T /Q [ T] K
and
(4.38) s —/ [1 ( w-VT——' v (/cVT))] a0
' k= Q T P PI‘\/ Ra k

Next, instead of using the approximate Taylor series approach (4.34) to determine G,
the latter is obtained by inverting the linear system:

P P
(4.39) > CinTiGy =Sk, k=0,...,P

i=0 j=0

which may be alternatively written as:

(4.40) AG=S
where A is the matrix given by:
P
(4.41) Aij =) CipTe, 0<i,j<P
k=0

It is readily verified that when the Gi’s are obtained as the solution of the above
equation the integral constraints in Eq. (4.35) are exactly satisfied. (To this end, it is
sufficient to note that the above inverse procedure is an exact (discrete) de-convolution
of the Galerkin product.) Furthermore, with the resulting scheme, stable numerical
solutions are obtained. Thus, the present approach provides a simple and effective
means for obtaining a pressure solution that ensures that local divergence constraints
are satisfied.
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5. Validation of the Numerical Solver.

5.1. Boussinesq Limit. As a first validation, the results obtained with the
spectral solver are compared with previous stochastic spectral computations reported
in [15] for the Boussinesq limit. For clarity of the presentations, the quantities given
in this subsection are re-scaled consistently with the Boussinesq normalization.

5.1.1. Zero order spectral expansion. We set e = 0.001, and use the temper-
ature independent properties (k = p = 1). Then the grid convergence of the solution is
analyzed for increasingly refined spatial discretization, and zero order spectral expan-
sion (i.e. the deterministic problem). Results are reported in Table 5.1, for Ra = 108,
in terms of wall-averaged Nusselt number together with its minimal and maximal
values along the vertical walls, respectively:

I T 1 T
(5.1) Nugy = —/ —nwdy, NUpin.max = — min, max _HL 0,5) .
2¢ Jy Ox ’ 2¢ Ox

Note that these quantities are computed along the hot wall; for the present small value
of €, the solution is nearly symmetrical with respect to the central vertical plane. In
fact, the agreement between hot and cold walls values is within 0.1% for the minima,
and maxima of the Nusselt, while the wall-averaged Nusselt numbers on both walls
are equal (for any €) at steady state. Table 5.1 shows that as the grid is refined, the
present finite difference results rapidly approach the spectral results of Le Quéré [17].
Moreover, a detailed analysis of the solution (not shown) shows that the temperature
and velocity fields are also in very good agreement with the results reported in [17].
In Table 5.2, we compare the computed values of the wall-averaged Nusselt number at
Ra = 10%, € = 0.001, obtained using a 80 x 80 grid, with some reference results based
on the Boussinesq approximation. Again, a good agreement with reported results is
observed.

Ny x Ny | 40 x40 | 80 x 80 | 120 x 120 | 160 x 160 | spectral [17]
Nu,y 9.426 8.982 8.895 8.865 8.825
Numin 0.939 0.971 0.976 0.978 -
Numax 20.50 18.74 18.09 17.85 -

TABLE 5.1

Mean, minimum and mazimum Nusselt numbers for different spatial discretizations with € =
0.001 and Ra = 108. Deterministic results are obtained using the stochastic code with 0-order
spectral expansion with a constant-property model.

Model Nugy | Numin | Numax

De Vahl Davis [7] Boussinesq 4519 | 0.729 | 7.717

Le Quéré et al. [18] Boussinesq 4.523 | 0.728 | 7.720
Chenoweth et al. [2] Boussinesq 4.520 - -

Hortmann et al. [12] Boussinesq 4.522 - 7.720

Paillere et al. [26] (80x80) | zero-Mach (e = 0.01) | 4.523 | 0.738 | 7.68

Present (80x80) zero-Mach (e = 0.001) | 4.547 | 0.726 | 7.840

TABLE 5.2

Wall-averaged, minimum and mazimum Nusselt numbers, at Ra = 105. Results are compared
with reported Boussinesq predictions. The present zero-Mach-number, deterministic results were
obtained using € = 0.001, constant-property model on a 80 X 80 uniform grid.
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5.1.2. Stochastic Boussinesq computations. The predictions of the stochas-
tic zero-Mach code for small € are now validated against the spectral Boussinesq
computations presented in [15]. Results are obtained with L, = 1 and or = 0.5.
The random temperature fluctuations are represented using a KL expansion with
Nk, = 4, and a second-order PC expansion is used. Accordingly, P = 14 i.e. the PC
expansion has 15 polynomials.

In order to compare the zero-Mach stochastic predictions with Boussinesq re-
sults [15], we choose a small value of the Boussinesq parameter, € = 0.001. The
constant-property formulation is used, and the governing equations are time-integrated
up to steady state, using 80x80 and 140x 100 grids. As shown in Table 5.3, when the
same spatial grid resolution is used, there is excellent agreement between the Boussi-
nesq [15] and zero-Mach predictions of the mean Nusselt number, (Nu,y,) and its stan-
dard deviation, o(Nuay ). Specifically, for a 140x100 grid, the differences between the
zero-Mach and Boussinesq predictions are less than 0.15%, while differences between
the zero-Mach predictions at different resolution levels are less than 1.6%. The higher
value of < Nu,, > for the lower grid resolution is not surprising, as the convergence
analysis provided above (Table 5.1) has shown an increasing over-estimation of Nu,,
with decreasing grid resolution for the deterministic case. In addition to the compari-
son in Table 5.3, detailed analysis (not shown) of the individual modes in the spectral
expansion also reveals excellent agreement between zero-Mach and Boussinesq pre-
dictions. In particular, when the same grid resolution is used, the relative difference
between corresponding second-order modes in the Boussinesq and zero-Mach solutions
is everywhere less than 1%. Thus, at small €, close agreement between the zero-Mach
and Boussinesq predictions is observed both for integral quantities and local field
values.

N.B. 80x80 | N.B. 140x100 | Boussinesq 140x100
< Nupy > 9.0794 8.9716 8.9729
o(Nugy) 2.4993 2.4602 2.4632
TABLE 5.3

Comparison of zero-Mach stochastic spectral computations for e = 0.001 with Boussinesq pre-
dictions from [15].

5.2. Non-Boussinesq regime. In this section we examine the behavior of the
zero-Mach code in the non-Boussinesq regime, i.e. for moderate values of €. Since,
to our knowledge, no results are available for the stochastic problem, the analysis is
limited to the deterministic case. The effects of the Boussinesq parameter € on the
flow statistics in the stochastic case are examined in the following section.

N, x N,

40 x 40

80 x 80

120 x 120

160 x 160

Nugy

8.600

8.744

8.688

8.651

Nupin-(hot/cold)

(0.987-2.037)

(1.057-0.663)

(1.064-0.677)

(1.064-0.691)

Nupax-(hot/cold)

(23.86-12.48)

(21.81-14.77)

(21.00-15.38)

(20.70-15.48)

TABLE 5.4
Mean, minimum and mazimum Nusselt numbers on the hot and cold walls for different spatial
discretizations. Deterministic predictions obtained using € = 0.6, Ra = 10% and a variable-property
model.

We start with a brief examination of the effects of spatial resolution on steady-
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state predictions. To this end, we set € = 0.6, Ra = 10 and rely on the variable-
property model. In Table 5.4, the steady-state Nusselt number is computed with
spatial resolutions, corresponding to grids with 40x40, 80x80, 120x 120, and 160x 160
cells. Also shown are the maximum and minimum values of Nu on the hot and cold
walls. Note that for this large € case, the local heat flux distributions on the hot
and cold walls differ, which leads to corresponding maximum and minimum values.
However, at steady state the wall-averaged Nusselt number is identical for both the
hot and cold walls. The results of Table 5.4 also show that as the grid is refined, the
predictions tend towards a fixed value. In particular, when the number of cells along
each direction is larger or equal to 80, the predicted values of Nu,, vary by less than

1%.

T LELRLRLLL U LERRRLLL LERRALLL LERRALLL

0.99

0.98

P/Pc

0.97

0.96

0.95
100 1000 10000100000 1e+06

Ra

Fic. 5.1. Computed values of P/P. (symbols) for different values of the Rayleigh number, Ra,
and the Boussinesq parameter, € = 0.2, 0.4 and 0.6. Solid lines reflect the analytical results of [2].
A computational grid with 80 x 80 cells is used.

In order to gain additional confidence in the computations, we contrast the pre-
dicted value of the steady-state thermodynamic pressure, P, with the analytical pre-
dictions of Chenoweth & Paolucci [2]. This is a stringent test because the steady-state
pressure is obtained by time integration of the unsteady pressure field (Eq. 4.3), and
is thus potentially affected by the accumulation of time integration errors. Several in-
vestigations (e.g. [2, 19, 26]) have in fact pointed out to severe difficulties in computing
the static pressure by direct integration, due to inaccurate time integration schemes
and/or inconsistency of the overall scheme. For the present scheme, however, the
steady P is accurately predicted, as illustrated in Fig. 5.1. The latter depicts curves
of P(e)/P.(€), where P is the steady pressure and P, is the pressure corresponding
to a purely conductive solution [2]. Results are generated for e = 0.2, 0.4, 0.6 and
Rayleigh numbers in the range 10> < Ra < 10%. The simulations were performed
on a 80 x 80 grid using the variable-property model. In each case, the numerical
time-steps was selected so as to satisfy the stability constraints of the explicit time
integration scheme. In the figure, the static pressures computed at Ra = 10% were
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used to estimate P.(€), since they were found to be in excellent agreement with the
analytical expressions of [2]. As shown in Fig. 5.1, an excellent agreement with the
analytical results [2] is obtained, but small deviations are observed at Ra = 10® and
€ = 0.6 where the grid may not be sufficiently refined.

6. Effect of the Boussinesq parameter on uncertainty . Following the
brief validation study above, the stochastic zero-Mach-number code is applied in this
section to analyze the effect of the Boussinesq parameter on the statistics of the
stochastic cavity flow. We set Ra = 10%, L. = 1, or = 0.5, and consider four different
values of €, ¢ = 0.01, 0.1, 0.2, and 0.3. We rely on previous experiences in [15] and
restrict the computations to a second-order PC expansion, and perform computations
on a grid with IV; = 120 and N, = 100. For brevity, only the constant-property model
is used.

6.1. Heat transfer characteristics. In order to compare the solutions for dif-
ferent values of the Boussinesq parameter, including the Boussinesq regime at very
small €, it is convenient to rescale the temperature modes according to:

To—1
To — 0o =1+ =2
T 2e
Te — 0, == k=1,...,P
2e

Based on this normalization, the wall-averaged and local Nusselt numbers are given
by:

P 1 P
60 Nuw(§) = =3 [ FEC Ty, Nulr.) == Y FE ) T(e)
k=0

k=0

with £ = 0 for the hot wall and z = 1 for the cold wall. As mentioned earlier, the
local values of Nu(y) may differ on both walls, but the average values are equal at
steady state.

No=1 No=0
(Nuay) o(Nuay) <P>  o(P) Ntgy
e =0.01 8.990 2479  0.9999 0.0022  8.871

e=10.10 9.018 2.531 0.9959 0.0232 8.872
e=0.20 9.055 2.591 0.9833 0.0501 8.874
e=0.30 9.103 2.653 0.9612 0.0819 8.880

No=2 No=20
(Nug) o(Nuy) <P>  o(P) Nu,y
e=0.01 8.992 2.472 0.9999 0.0022 8.871

e=10.10 9.019 2.529 0.9959 0.0232 8.872
e=0.20 9.058 2.598 0.9832  0.0538 8.874
e=0.30 9.108 2.676 0.9609 0.0829 8.880

TABLE 6.1
Egzpectations (< . >) and standard deviations (0(.)) of the Nusselt numbers and normalized
thermodynamic pressure P, for different ¢ using first- and second-order erpansions. The Nusselt
number for the deterministic case (zero-order erpansion) is also given in the last column.

In Table 6.1, the expected values and standard deviations of Nuy, and P at steady
state are given for € = 0.01, 0.1, 0.2 and 0.3, for the spectral solutions obtained using
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first- and second-order PC expansions, No = 1 and 2 respectively. The results show
that < Nu,, > and o(Nu,y) increase with €. The results also show that the first-
order and second-order PC expansions yield estimates of < Nu,, > that are in close
agreement, but differences in the corresponding standard deviations can be noted. For
€ < 0.1, the first-order PC expansion slightly overestimates o(Nu,y ), while the reverse
trend occurs at higher €. Table 6.1 also shows that the mean thermodynamic pressure
and its standard deviation exhibit a non-linear dependence on e. The differences
between first and second-order PC predictions are more pronounced than for the
Nusselt number. In particular, for € > 0.2, a second-order PC expansion is found
necessary for accurate prediction of the standard deviation of the thermodynamic
pressure.

Hot wall Cold wall

min (Nu)  maz (Nu) min (Nu) maz (Nu)
€ =0.01 0.981 18.50 0.917 18.41
€=0.10 0.999 18.82 0.890 18.30
€=10.20 1.019 19.24 0.853 18.21
€=10.20 1.041 19.76 0.803 18.17

min[o(Nu)] maz[oc(Nu)] min[o(Nu)]  maz[o(Nu)]
e =0.01 0.244 5.559 0.805 6.358
€ =10.10 0.255 5.871 0.816 6.540
€ =0.20 0.268 6.302 0.834 6.814
€ =0.20 0.282 6.831 0.866 7.228
TABLE 6.2

Local heat-fluz statistics along the hot and cold walls. Provided are the minima and mazima of
the standard deviation of the local heat flux for different values of €. Results were obtained using a
second-order polynomial expansion.

1 T T T T 1 T T
0.9 | g 0.9 | g
08 - £=0.01 —— 08 - g
£=0.10 -----
L £=0.20 - | L ]
0.7 flo%0 0.7
0.6 [ g 0.6 [ g
> 05 g > 05 g
04 g 0.4 £=0.01
£=0.10 -----
L ] L £=0.20 - |
03 0.3 S50
0.2 g 0.2 | g
01 g 01 g
0 L 1 0 1 1 1
0o 2 4 6 8 10 0o 2 4 6 8 10
o(Nu) o(Nu)

F1G. 6.1. Standard deviation of the local heat fluz across the hot (left plot) and cold (right plot)
walls. Results were obtained using a second-order PC with N1 = 4 and a constant-property model.

The results presented in Table 6.1 provide information on the effect of € of the
statistics of the overall heat transfer. We now turn our attention to the statistics of
the local heat flux distributions on the hot and cold walls. Provided in Table 6.2 are
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the minima and maxima of the mean heat flux and its standard deviation for both
the hot and cold walls. The results indicate that there are opposite trends with e
concerning the maxima and minima of < Nu > on the two walls. Specifically, the
minimum and maximum of values of < Nu > increase with increasing e on the hot
wall, while they decrease with increasing e on the cold wall. In addition, the effect of
€ on the maximum expected heat flux is more pronounced on the hot wall than it is
on the cold wall. Meanwhile, the maximum and minimum values of o(Nu) increase
with € on both the hot and cold walls. This trend is consistent with our previous
observation that the standard deviation increases with e. It is also interesting to note
that, as shown in Fig. 6.1, the values of o(Nu) are generally larger on the cold wall,
where the uncertainty is applied, than on the hot wall. In addition, the figure shows
that on the cold wall o(Nu) is everywhere affected by €, while on the hot wall the
variations of o(Nu) with € are limited to the lower part of the wall.

0 010203040506070809 1 0 0 010203040506070809 1 0
O =T . @z,
r | .
I bo: | o
ll s | e
k§ I
Lo Lo
los los
l 0.2 ' 0.2
0.1 0.1

0 010203040506070809 1 ° 0 010203040506070809 1 °

F1G. 6.2. Contours of the mean scaled temperature 6 for: (a) e = 0.01, (b) e = 0.1, (¢c) e = 0.2,
and (d) e = 0.3. Contours range from the mazimum value (8 = 1.5) for the hot wall (z = 0) to the
minimum (6 = 0.5) on the cold wall (x = 1) with increments 0.05.

6.2. Mean fields. In this section we examine the dependence of the mean tem-
perature and velocity fields within the cavity on e. In Fig 6.2, the mean rescaled
temperature fields 6y are plotted for € = 0.01, 0.1, 0.2 and 0.3. Thanks to the scaling,
in all cases 6y = 1.5 on the left(hot) wall, p = 0.5 on the right (cold) wall. Thus,
direct comparison for different € is possible.

Figure 6.2 shows that the impact of € on the scaled temperature field is essentially
noticeable at the lower part of the and upper parts of the cavity. The effects are most
pronounced around the upper left corner of the cavity near the hot wall and the lower
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(@) =

F1G. 6.3. Contours of differences in scaled temperature fields: (a) < 8(e = 0.3) > — < f(e =
0.01) > for the second order polynomial expansion; (b) 8(e = 0.3) — (e = 0.01) for the deterministic
problem (0-order expansion).

Scale Factor .500E+00 Scale Factor .500E+00 Scale Factor .200E+01
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F1G. 6.4. Top row: Mean velocity field for e = 0.01 (left), e = 0.3 (center) and the corresponding
difference field (right). Results are obtained using a second-order PC ezpansion. Bottom row:
Deterministic velocity field for e = 0.01 (left), e = 0.3 (center) and the corresponding difference field

(right).

right corner of the cavity near the cold wall. With increasing e the fluid traveling at
the bottom of the cavity has, on the mean, a lower scaled temperature; the same trend
applies in the upper part of the cavity. In the core of the flow, the scaled temperature
distributions exhibit similar shape for all ¢, reflecting the classical patterns of natural
convection in a square cavity. In this region, the mean thermal stratification (06, /0y)
is weakly dependent on e.

To further analyze the influence of € on 6y, in Fig. 6.3(a) we plot the difference
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between the two averaged fields computed for € = 0.01 and 0.3. From this plot, one
can observe that on average the scaled temperature in the cavity is globally lower
for € = 0.3 than for € = 0.01, except along the two vertical boundary layers where it
is higher. The figure also reveals that large temperature differences, with amplitude
as high as 5% of AT, occur in the neighborhood of the top left corner and bottom
right corner. The difference in mean solutions should not be fully attributed to a
different response to the temperature boundary condition uncertainty. To establish
this claim, Fig. 6.3(b) shows the differences in scaled temperature fields, for the same
values €, between deterministic computations. The similarity between the two frames
in Fig. 6.3 indicates that imposition of stochastic conditions result, on average, in only
weak amplification of the differences that occur in the deterministic solution. Similar
observations can be drawn by inspection of the mean and deterministic velocity fields
plotted in Fig. 6.4. Note the strong spatial correlation of the differences between the
solution for e = 0.01 and 0.3 for the scaled temperature and velocity fields.

Scale Factor .500E+01

0.0093

0.0039

—-0.001

-0.006

-0.012

-0.017

0.0089
0.0009

-0.007

~0.015
& B §-0.023
' R

-0.031

o=
0

F1G. 6.5. Differences between mean and deterministic velocity (left) and temperature (right).
Top row: € = 0.01; bottom row: € = 0.3.

It follows from the discussion above that the influence of € on the mean solutions
in the stochastic case is better understood when the corresponding deterministic, or
zero order, solutions are first subtracted from the averaged fields. Results of such
exercise are given in Fig. 6.5, based on second-order PC computations for € = 0.3 and
€ = 0.01. There are striking similarities between the distributions for both values of €.
Specifically, for both cases the differences in the velocity fields exhibit three recircu-
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lation zones, with alternated sign of circulation, along the lower wall. The strengths
of these structures, which have been observed in the Boussinesq analysis [15], are
amplified with increasing e. A similar effect is also visible for the scaled temperature
fields plotted in Fig. 6.5. With respect to the deterministic solution, the application of
stochastic conditions results in lower mean temperature at the bottom of the cavity,
with a maximum amplitudes of less than 1.8% for ¢ = 0.01 and greater than 3% for
€ = 0.3. Thus, the impact of stochastic temperature fluctuations exhibits a non-linear
dependence on the Boussinesq parameter.

(d)

0 0
0 0102030405060.70809 1 0 010203040506070809 1

F1G. 6.6. Standard deviation in scaled temperature 0 for (a) € = 0.01, (b) e = 0.1, (¢) e = 0.2,
and (d) ¢ = 0.3. Note that g = 0 on the hot-wall (x = 0), where a deterministic temperature is
imposed, and that it peaks on the cold wall (x = 1) where the uncertain fluctuations are imposed.
The same contour increment is used in all frames.

6.3. Standard deviations. The dependence of the flow statistics on € is briefly
illustrated by analyzing the standard deviations of the scaled temperature fields. The
latter are plotted in Fig. 6.6 for ¢ = 0.01, 0.1, 0.2 and 0.3. As a result of this
scaling, for all cases the (theoretical) value of o(8), the standard deviation of 6,
is 0 on the hot wall and 0.25 on the cold wall. On can observe in Fig. 6.6 that
the standard deviations are not exactly equal to 0.25 on the cold wall but slightly
lower. As discussed extensively in [15], this small discrepancy is due to the truncation
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(Ngr = 4) of the KL expansion. As observed in the Boussinesq analysis [15], the
distribution of oy exhibits a recirculation pattern that is similar to that of the mean
temperature field.

0.0348
’ 0.0263
0.0177
0.0091

‘ 0.0005

—0.008

Fi1G. 6.7. Le Maitre et al.

In order to obtain a better appreciation of the dependence of oy on ¢, the difference
between the standard deviation fields computed for € = 0.01 and ¢ = 0.3 is plotted
in Fig 6.7. The figure indicates that in the interior of the cavity, larger values of oy
occur for € = 0.3 than for € = 0.01. This trend does not hold along the vertical walls,
where the impact of € is much weaker. Also note that the differences in oy between
the solutions for € = 0.3 and € = 0.01 can be substantial, reaching approximately 14%
of the imposed value along the cold wall.

7. Conclusions. A stochastic zero-Mach-number flow solver is developed. The
solver incorporates a variable-density stochastic projection method which maintains
the computational advantages of the Boussinesq solver [15]. A mass-conservative
formulation is used, which is exactly implemented using a specially-tailored stochastic
inverse procedure. The approach results in decoupled mass divergence constraints,
which are inverted using a fast Poisson solver. Thus, a stable and efficient stochastic
SPM for zero-Mach-number flows is constructed.

A brief validation study of the numerical scheme was first performed, based on
available results for natural convection within a square cavity. The simulations were
compared with available previous results from deterministic and stochastic compu-
tations. Tests under deterministic conditions included results on (a) steady-state
Nusselt numbers in the Boussinesq limit and (b) steady-state thermodynamic pres-
sure under non-Boussinesq conditions. Stochastic tests were limited to the Boussinesq
regime but examined predictions of mean quantities as well as temperature and heat
transfer statistics. In all cases, favorable agreement between the present predictions
and previous results was obtained, thus providing support for the validity of the zero-
Mach-number stochastic scheme.

The stochastic zero-Mach-number scheme was then applied to analyze the effect
of the non-Boussinesq parameter € on the steady-state temperature and velocity fields
in a heated cavity under stochastic temperature boundary conditions. Results reveal
a non-linear dependence of the mean heat transfer statistics on €. In particular, as €
increases both the Nusselt number and its standard deviation increase. The variance
of the local heat flux also increases with €, and this effect is more pronounced along
the cold wall. The mean temperature and velocity fields also depend on the Boussi-
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nesq parameter, with trends resembling closely those established under deterministic
conditions. On the other hand, when stochastic conditions are imposed, € has a strong
impact on the variance fields.
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