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ABSTRACT

The dynamics and dispersion of small air bubbles in isotropic turbulence are
analyzed computationally. The flow field is simulated using a pseudo-spectral
code, while the bubble dynamics are analyzed by integration of a Lagrangian
equation of motion that accounts for buoyancy, added mass, pressure, drag,
and lift forces. Probability density functions (pdfs) of bubble velocities, lift
and drag forces, and of field velocities and vorticities along bubble trajecto-
ries are used to analyze bubble dynamics. Lagrangian bubble trajectories are
also employed to determine dispersion characteristics, following the theoretical
development of Cushman and Moroni (2001). Consistent with available exper-
imental data, bubble rise velocities are increasingly suppressed with increasing
turbulence intensity. The analysis also reveals that the vertical bubble veloci-
ties are characterized by asymmetric pdfs that are positive or negative-skewed
dependent upon the non-dimensional turbulence intensity and the Taylor length
scale. The role of the lift force in moving the bubbles to the down-flow side of
turbulent eddies, and consequently retarding their rise, is consistently observed
in all analysis. The dispersion of 40 µm bubbles and transition to Fickian be-
havior is shown to be weakly affected by the turbulence level. Larger, 400 µm
bubbles are shown to be more sensitive to turbulence level with transition to
Fickian behavior delayed in low turbulence fields.
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1 Introduction

The behavior of small particles, bubbles and droplets in turbulent flows is
important to numerous physical processes including, among other examples,
the production, refining and distribution of oil products, and the environmental
monitoring and cleanup of contaminants. It is generally accepted that the rise of
bubbles is suppressed by turbulence (Wang and Maxey1, Spelt and Biesheuvel
2, Poorte and Biesheuvel3). Conversely, it also accepted that the settling of
heavy particles is enhanced by turbulence (Maxey4, Wang and Maxey5, Mei6).

Numerous mechanisms have been analyzed that contribute to, or affect the
turbulent enhancement of heavy particle settling and the retardation of bub-
ble rise rates. These include “trajectory biasing,” lift forces, and non-linear
drag. Trajectory biasing has been shown (Maxey4, Wang and Maxey5, Mei
6) to increase the settling velocity of particles heavier than the surrounding
fluid by preferentially sweeping them to the down-flow sides of turbulent eddies.
Wang and Maxey1 show that, conversely, trajectory biasing reduces bubble rise
velocity.

Non-linear drag has been shown to be a significant factor affecting both the
settling rate of heavy particles and rise rate of bubbles when particle or bubble
Reynolds numbers are above the Stokes flow regime (Rep or Reb > 1) where

Rep = 2U ã
ν̃ , U is velocity, ã is radius and ν̃ is kinematic viscosity. Numerous

studies (Tunstall and Houghton7, Hwang8, Fung9;10, Mei6, Stout et al.11, Mei
et al.12) have noted that the non-linear increase of the drag force when Rep �
1 may result in a reduction of the mean settling velocity of heavy particles,
though this effect may be counteracted by trajectory biasing for small particles,
particularly when the particle diameter is much smaller than the Kolmogorov
microscale.

The role of the lift forces in retarding the rise of bubbles has also been
analyzed. In particular, Spelt and Biesheuvel2;13 used numerical simulation to
show that lift forces reduced the rise velocity of bubbles in isotropic turbulence
by preferentially moving bubbles horizontally towards regions of net downward
fluid velocity.

Inconsistent with the trends observed for bubbles and heavy particles, recent
experimental work by Friedman and Katz14, showed surprising behavior for
fuel droplets that are slightly lighter than water. Specifically, the mean rise
velocity in turbulence was found to be larger or smaller than the quiescent
rise velocity, depending upon the turbulence intensity, droplet size and upon
the droplet Stokes number Std. The present paper is part of an effort aiming
at explaining this unexpected behavior in particular, and more generally at
investigating dispersion of bubbles and droplets in turbulent flow fields.

In the present phase of the effort, attention is focused exclusively on the
behavior of air bubbles in isotropic turbulent flows. Specific objectives include
establishment of confidence in the validity of the numerical predictions, char-
acterization of the mean bubble rise and investigation of the origin of observed
trends, and detailed analysis of the bubble dispersion process and its (statistical)
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dependence on length and time scales.
Our present focus on the behavior of bubbles is motivated in part by the

availability of a large body of experimental and computational data on the
rise of air bubbles in isotropic turbulence, and of useful correlations of the
forces experienced by bubbles in relevant vorticity dominated flows. 15;16 As
further discussed in Section 2, the present approach is based on a one-way
coupling model, which combines a direct solver for single-phase flow, with a
Lagrangian tracking of the bubble motion. Specifically, the bubbles are tracked
by integrating a Lagrangian equation of motion that accounts for drag, lift,
added mass and pressure forces. Though the model ignores the effect of bubbles
on the turbulent flow field, it enables us to efficiently consider a wide parameter
regime, which facilitates the analysis of bubble rise and dispersion.

In section 3, the numerical model is applied to analyze the rise of small
bubbles in isotropic turbulence. Specifically, the mean rise of the bubbles is
determined for different turbulence conditions and different bubble diameters.
Consistent with relevant experimental and computational data, in all cases one
observes a suppression of the mean bubble rise from the corresponding quiescent
rise velocity. In order to further characterize the observed trends, a statistical
analysis is performed of the bubble velocities, bubble Reynolds numbers, the flow
vorticity at the bubble positions, as well as the drag and lift forces experienced
by the bubbles.

In section 4, the computed results are once again exploited to conduct a
detailed analysis of the bubble dispersion process. The analysis relies on the
recent theoretical development of Cushman and Moroni17;18, who introduce
a time- and lengthscale-dependent dispersion tensor. The theory generalizes
the classical Fickian theory in which the dispersion rate is described using a
single scalar. The generalized theory is applied to (i) explore conditions under
which the bubble dispersion can be well approximated by a Fickian process, (ii)
characterize, for different bubble diameters, the effect of the dissipation rate
on the bubble dispersion, and (iii) where appropriate, establish links between
the generalized and classical dispersion theories. Comparison is made with
the experimental results of Snyder and Lumley19, Spelt and Biesheuvel2 and
Mazzitelli and Lohse.20

Major conclusions are provided in section 5.
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2 Formulation and Numerical Scheme

2.1 Governing Equations for the Flow

Consider the turbulent flow in a cubic periodic domain with side-length L̃. The
fluid is assumed incompressible with uniform density, ρ, and dynamic viscosity,
µ. The flow in the domain D̃ ≡ [0, L̃]3 is governed by the momentum and mass
conservation equations:21





ρ
∂U

∂t̃
+ ρU∇̃U = −∇̃P + µ∇̃2U + ρG + ρF ,

∇̃ · U = 0.

(1)

where U is the velocity vector, t̃ is time, P is pressure, and G and F denote
the gravity and applied force per unit volume, respectively. Where necessary,
tildes are used to denote dimensional quantities.

Using Lc ≡ L̃/2π as characteristic length scale, and U c ≡ α(ν̃/Lc) as char-
acteristic velocity scale, one can define normalized values of velocity, length,
pressure, time, gravity force and applied force as follows:

u = U/U c, x = X/Lc, p ≡
P

ρ(U c)2
, t ≡

t̃U c

Lc
, g ≡

GLc

(U c)2
, f ≡

F Lc

(U c)2
.

Here, α is a constant, and ν̃ ≡ µ̃/ρ̃ is the kinematic viscosity. Using this
normalization convention, the normalized governing equations may be expressed
as: 




∂u

∂t
+ u∇u = −∇p +

1

Re
∇2u + g + f ,

∇ · u = 0,

(2)

where Re ≡ U cLc/ν = α is the “nominal” Reynolds number.

2.2 Direct numerical simulation of the flow

A pseudo-spectral flow solver is used to simulate the evolution of the flow. The
solver is based on integration of normalized mass and momentum equations:





∂u

∂t
+ ω ∧ u = −∇p∗ +

1

Re
∇2u + f ,

∇ · u = 0,

(3)

with periodic boundary conditions on the domain D = [0, 2π]3. Here p∗ ≡
p + φg + 1

2
‖u2‖ is the normalized total head, where φg is the gravitational

potential, defined such that g ≡ ∇φg .
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The pseudo-spectral scheme of Vincent and Meneguzzi22 is adapted to the
simulation of (3). Briefly, taking the Fourier transform of the governing equa-
tions, one obtains:





(
d

dt
+

k · k

Re

)
ûk = −ikp̂∗k + ̂(u ∧ ω)k + f̂k,

ik · ûk = 0.

(4)

where hats are used to denote the Fourier coefficients. Equation (4) is advanced
in time using a mixed integration scheme, in which the non-linear term is treated
explicitly using a second-order Adams-Bashforth method, while the diffusion
term is handled using exact factorization. This discretization results in the
following equation for each wave-vector k:

û
n+1

k
= û

n
k e

−
k2

Re
∆t

+ ∆tP


f̂

n

k e
−

k2

Re
∆t




+ ∆tP


3

2
(û ∧ ω)n

k e
−

k2

Re
∆t

−
1

2
(û ∧ ω)n−1

k
e
−2

k2

Re
∆t


 , (5)

where the superscript refers to the time level, ∆t is the time step, k2 ≡ k · k,
and P [·] denotes the projector onto the direction perpendicular to k.

The non-linear terms in (5) are evaluated in a pseudo-spectral fashion 23. No
de-aliasing procedure is applied, but a spherical truncation is used24. Finally,
the forcing term f , which is necessary to sustain the turbulence, is set as

f̂k =
ε

26

ûk
|ûk|

2
for 0 < ‖k‖ < 2, f̂k = 0 otherwise. (6)

Thus, constant energy injection with rate rate ε is imposed. After an initial
transition, the dissipation rates oscillates slightly around ε.

The turbulent flow has two relevant dimensionless physical parameters, the
nominal Reynolds number, Re, which is set to 1000, and the reduced dissi-
pation rate, ε (=4.0x10−3). These parameters fix the normalized Kolmogorov

microscale: η ≡
(
εRe3

)−1/4
≈ 0.022.

2.3 Governing Equations for Bubble Motion

We assume that the bubbles are small, such that surface tension prevents sig-
nificant deformations. Thus, the bubbles remain spherical with constant radius
ã. Furthermore, we assume a small void fraction so that the bubbles do not
impact the turbulent field; bubble-bubble interactions are also ignored.
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Following Maxey & Riley25, the dimensional equations of motion for a bub-
ble are given by:26;16;27;28





dXb

dt̃
= V b(t̃),

dV b

dt̃
= −2∆ρ∗G − 2ρ∗F + 3ρ∗

DU

Dt̃
+

3ρ∗

4ã

[
CD‖U r‖Ur + CL

‖U r‖

‖ω̃‖
U r ∧ ω̃

]
,

(7)
where Xb(t̃), V b(t̃), and ρb respectively denote the bubble position, velocity,
and density,

ρ∗ ≡
ρ

2ρb + ρ
, (8)

is the reduced density,

∆ρ∗ ≡
ρ − ρb

2ρb + ρ
. (9)

is the reduced density difference, ω̃ = ∇̃∧U is the local vorticity at the bubble
position (see further discussion below), U r ≡ U(Xb(t̃), t̃)−V b(t̃) is the relative
velocity.

The lift coefficient CL is adapted from the experimental correlations of Srid-
har and Katz16. Specifically, we set:

CL = 0.59

(
ã‖ω̃‖

‖Ur‖

)1/4

. (10)

Following Cerutti et al.26, the following correlation is used for the drag coeffi-
cient:





CD =
24

Reb
, Reb < 1,

CD =

(
24

Reb

)(
1 +

3.6

Re0.313
b

(
Reb − 1

19

)2
)

, 1 ≤ Reb ≤ 20,

CD =

(
24

Reb

)(
1 + .15Re0.687

b

)
, Reb > 20,

(11)

where

Reb =
2ã‖U r‖

ν
. (12)

The equations of motion of the bubbles are normalized using the same char-
acteristic scales as in the normalization of the flow equations. This results in:




dxb

dt
= vb(t),

dvb

dt
= −2∆ρ∗g − 2ρ∗f + 3ρ∗

Du

Dt
+

3ρ∗

4a

[
CD‖ur‖ur + CL

‖ur‖

‖ω‖
ur ∧ ω

]
,

(13)
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where a = ã/Lc is the normalized bubble radius, and

Reb = 2a‖ur‖Re (14)

is the bubble Reynolds number. In terms of dimensionless quantities, the lift
coefficient is given by:

CL = 0.59

(
a‖ω‖

‖ur‖

)1/4

(15)

where ω is the normalized vorticity.
The normalized fluid Lagrangian acceleration is determined from the inverse

Fourier transform of the corresponding modes:

(
D̂u

Dt

)

k

= −ik ̂(p + φg)k −
k2

Re
ûk + f̂k, (16)

where
̂(p + φg)k =

−ik

k2
·
[
(û ∧ ω)k + f̂k

]
−

1

2
(û · u)k . (17)

Note that since the density of the bubbles is much smaller than that of the
fluid, i.e. ρb << ρ, we have ρ∗ ≈ 1 and ∆ρ∗ ≈ 1. Thus, the equations of motion
of the bubbles reduce to:




dxb

dt
= vb(t),

dvb

dt
= −2(g + f ) + 3

Du

Dt
+

3

4a

[
CD‖ur‖ur + CL

‖ur‖

‖ω‖
ur ∧ ω

]
,

(18)

which, except for the forcing term, is identical to the expression used by Sridhar
and Katz16;27.

2.4 Integration of the Equation of Motion

Integration of the equations of motion is performed using the implicit-explicit
(IMEX) approach developed by Cerutti et al.26. The approach is based on an
implicit, Crank-Nicolson treatment of the linear part of the drag term, and on
explicit treatment of the remaining terms. The advantage of this approach is
that it overcomes the inherent stiffness of the equation of motion, which arises
as the bubble Reynolds number is small.

Implementation of this approach is based on first rewriting the bubble ac-
celeration as:

dvb

dt
= H(t) +

3ρ∗

4a

24

Reb
‖ur‖ur, (19)

where

H(t) ≡ −2∆ρ∗g−2ρ∗f+3ρ∗
Du

Dt
+

3ρ∗

4a

[(
CD −

24

Reb

)
‖ur‖ur + CL

‖ur‖

‖ω‖
ur ∧ ω

]
.

(20)
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Substituting the expression for Reb into (19), we get:

dvb

dt
= H(t) +

9ρ∗

a2Re
(u − vb). (21)

In the computations, the first term is integrated explicitly using a third order
Adams-Bashforth scheme, while the second term is treated implicitly using a
Crank-Nicolson scheme. The velocity update is thus expressed as:

vn+1
b =

vn
b + ∆t

(
H̄ + Ḡ +

9ρ∗

2a2Re
un+1

)

1 +
9ρ∗

2a2Re
∆t

, (22)

where

H̄ ≡
23

12
Hn −

16

12
Hn−1 +

5

12
Hn−2, (23)

Ḡ ≡
9ρ∗

2a2Re
(un − vn

b ). (24)

Note that the flow velocity at the new time step, un+1, appears on the right-
hand side of (22). Thus, the flow field is updated first, and the equations of
motion of the bubbles are updated second in order to complete an integration
step.
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3 Bubble Rise Results

3.1 Data Generation and Methodology

Results are obtained for air bubbles rising in four different isotropic turbulent
fields having different characteristics, as summarized in Table 1. In all cases,
the fluid is water with ρ̃ = 1000 kg/m3 and ν̃ = 10−6 m2/s. Normal gravity is
assumed to prevail with g̃ = 9.8 m/s2.

The flow is computed using the scheme outlined in section 2 with 1283 grid
points. The simulations are performed by first integrating the flow conservation
equations over a period sufficiently long for a stationary isotropic turbulent flow
field to be obtained, as verified by monitoring the spectrum of the turbulent
kinetic energy.

Once stationary turbulence is reached, a set of bubbles is injected in the flow.
We take advantage of the one-way coupling model by injecting a large number of
bubbles of different radii in the range of 5-600 µm. For each radius, a set of 5000
bubbles is considered; their initial locations are drawn at random from a uniform
distribution over the domain, and their initial velocity coincides with the local
flow velocity at the bubble center. The motion of the bubbles is then tracked
by integrating the Lagrangian equations of motion outlined above. In order to
minimize the impact of the prescribed initial bubble position and velocity, the
motion of the bubbles for a period of t = 50 after injection is discarded, and
data collection and analysis is performed for 50 ≤ t ≤ 250 following bubble
injection. The position and velocity of the bubbles as well as flow velocity and
vorticity at the bubbles’ center are recorded periodically at a fine time interval,
δt = 0.1.

Analysis of the bubble dynamics and dispersion based on the resulting data
is discussed in the following sections. For brevity, we focus most of our attention
on two data sets: “small bubbles” with radius of 40 µm and “large bubbles”
with 400 µm radius. In section 3.2 the mean rise velocity of the bubbles is exam-
ined, and contrasted with corresponding predictions for quiescent conditions. A
more detailed analysis of the dynamics is then performed in section 3.3, where
statistical distributions of the bubble velocity, local flow and relative velocity,
vorticity and fluid forces experienced by the bubbles along their paths are gen-
erated. These distributions are used to further characterize the trends in the
mean rise observed earlier.

3.2 Mean Bubble Rise

3.2.1 Suppression of Rise Velocity

Figure 1 and Table 2 provide a comparison of the computed bubble rise rates in
turbulence with those calculated for quiescent conditions. The results show an
increasing suppression of the bubble rise velocity (w.r.t the quiescent value) as
the turbulence level increases. For all fields studied, the amount of rise velocity
suppression increases as bubble radius increased. Note that the shape of the
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quiescent rise curve between 100 and 225 µm radius is affected by the numerical
approximation used for the transition between different drag coefficient regimes,
namely from the Stokes flow regime (Reb < 1) to the empirical correlation for
Reb > 20 (11).

The turbulence magnitude is often measured using the relative turbulence

intensity β. Two definitions are found in the literature, β =
√

u′2

|ur| or β =
√

u′2

|ut| , where u′ is root mean square of the flow velocity fluctuation, |ur| is the

magnitude of the mean relative velocity between the bubble and the turbulent
flow, and |ut| is the magnitude of the bubble terminal velocity in a quiescent
fluid. In the following, we shall use the definition based on the terminal velocity.

Based on the results in Figure 1, our reduction in rise velocity ranges from
approximately 20% for turbulent fields 3 and 4 (with β < 0.5 for bubble radius
≥ 240 µm) to approximately 60% for highest turbulence field 1 (with β > 2
for bubble radius ≥ 240 µm). In all fields, larger bubbles experienced more
reduction in rise velocity than smaller ones. These results are consistent with
available computational and experimental data. For example, computations
by Wang and Maxey1 show an approximately 33% decrease in microbubble
rise velocities for β � 1. Experimental results of Spelt and Biesheuvel 2 show
approximately 50% decrease in rise velocities of 500 µm radius bubbles with
β ≤ 1. Experiments by Poorte and Biesheuvel3 for 340 and 570 µm radius
bubbles with 0.0066 ≤ β ≤ 0.443, show reductions in rise velocities of up to
35%.

We note, however, in both our simulation and in experimental data, that
suppression trends with β are not consistent. Specifically, for a given size bubble,
the amount of rise suppression increases as β increases. On the other hand, for
a fixed turbulence level, the fraction of rise suppression decreases as radius
decreases (and as β increases).

There is wide agreement in the literature (Sene et al.29; Wang and Maxey1;
Maxey et al.30; Spelt and Biesheuvel2) that the primary mechanism for reduc-
tion of bubble rise velocities is vortex capture, or the preferential accumulation
of bubbles in regions of either low pressure or high vorticity. The general pro-
cess is rising bubbles encountering and then becoming trapped inside a vortex,
moving inside the vortex for a period, and then finally escaping the vortex as
the latter weakens or disintegrates. Using conditional probability distributions
of enstrophy ω̃ω̃, Wang and Maxey1 further show that the bubbles most likely
accumulate in regions of both low pressure and high vorticity.

In addition to vortex capture, Mazzitelli and Lohse31 and Mazzitelli et al32

also show that microbubbles tend to preferentially accumulate in the down-flow
regions of vortices, and that this process, which further reduces the mean rise
velocity, is strongly affected by the lift force experienced by the bubbles. We
observe similar behavior below.
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3.2.2 Impact of Lift Force on Suppression of Rise Velocities

To evaluate the importance of the lift force in the suppression of rise velocity,

calculations with lift, CL = 0.59
(

ã‖ω̃‖
‖U r‖

)1/4

, and zero lift, CL = 0.0, have been

performed.
Similar analysis has been recently performed by Mazzitelli et al 32, though

this analysis focuses on surfactant-free bubbles with Reb of order one, CD =
16/Reb and CL = 1/2. The present analysis, on the other hand, considers
surfactant-contaminated bubbles, with experimental correlations of the drag
and lift coefficients and Reb up to approximately 500.

Comparison of the bubble rise velocities for all four turbulent fields with lift
and zero lift shows the importance of the lift force in the suppression of bubble
rise velocity. As shown in Table 3 and Figure 2, the bubbles rise faster when the
lift force is ignored, but the corresponding turbulent rise velocity still remains
smaller than the quiescent rise velocity. As the turbulence level increases, the
difference between the experimental and zero-lift cases cases becomes larger.

The mechanism by which fluctuating lift forces preferentially move bubbles
to the down-flow sides of turbulent eddies has been discussed by Spelt and
Biesheuvel2 and Mazzitelli et al.32. Figure 3 shows our data for the mean ver-
tical fluid velocities seen by bubbles as a function of bubble radius. Consistent
with Spelt and Biesheuvel2 and Mazzitelli et al.32, Figure 3 shows that larger
bubbles, on average, experience larger negative vertical fluid velocity. Further,
Figure 4 shows that, for field 4, with CL = 0 the bubbles see noticeably smaller
mean downward mean velocity than is the case when the lift force is accounted
for. Similar results are obtained for fields 1-3. In all cases, the mean vertical
flow velocity seen by the bubbles is close to 0 when CL = 0, and is signifi-
cantly negative when using the experimental CL. These results provide direct
evidence of the contribution of lift force to moving bubbles to the down-flow
sides of turbulent eddies.

3.3 Statistical Analysis of Rise Phenomenon

Statistical analysis of the data collected along the Lagrangian bubble paths is
performed in this section. Probability distribution functions (pdfs) are com-
puted of the bubble and local flow velocities, bubble Reynolds numbers, local
vorticity, as well as bubble drag and lift forces. Where appropriate, differences
between pdfs generated from simulations with CL = 0 are contrasted with cor-
responding results using the experimental CL.

3.3.1 Statistics of Normalized Bubble Velocity

Figure 5 shows pdfs of the normalized bubble horizontal or transverse velocity
for 40 µm and 400 µm bubbles in field 1. In both cases, the pdfs are centered
around 0, symmetric and nearly Gaussian. Similar pdfs, not shown, were ob-
tained for fields 2-4. These results are consistent with the experimental data
of Poorte and Biesheuvel3. Note that the pdfs for 400 µm bubbles are wider
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than the pdfs of the 40 µm bubbles. This increase in the variance of the trans-
verse bubble velocity with the bubble radius is consistent with the findings of
section 3.2, where the mean rise velocity of large bubbles is found to be more
sensitive to turbulence then it is with small bubbles.

Figures 6 and 7 show pdfs of the normalized bubble vertical velocity for
fields 1-4. With the experimental CL, high turbulence field 2 and lowest tur-
bulence field 4 exhibit an asymmetry with the maximum of the pdf at a lower
velocity than the mean. We shall simply qualify this type of asymmetric pdf
as “negatively skewed.” Conversely, we shall call “positively skewed” a pdf in
which the most likely value is greater than the mean. In fields 2 and 4, the
pdfs are negatively skewed when the experimental CL is used, but positively
skewed when CL is set to 0. In field 3, the pdfs for 400 µm remain essentially
the same when the lift force is ignored; on the other hand, by setting CL to 0,
the pdf of 40 µm bubbles changes from positively skewed (experimental CL) to
negatively skewed (CL = 0). For field 1, the pdfs are positively skewed when
the experimental CL is used, but are nearly symmetric with CL = 0.

Positively skewed and negatively skewed pdfs of vertical bubble velocity
have been reported in prior computational studies by Spelt and Biesheuvel 2

and in experimental data of Poorte and Biesheuvel3. Both studies note that
the departure from symmetric distributions depends upon the values of non-
dimensional turbulence intensity β, and non-dimensional Taylor lengthscale λ∗.

The non-dimensional Taylor lengthscale is given by λ∗ = λ̃
τbVT

= 2λ̃g̃
VT

2 where

λ̃ is the dimensional Taylor length-scale and τb = VT

2g̃ is the bubble relaxation

time. Spelt and Biesheuvel2 discuss that the different observations of negative or
positive “bias” of vertical velocity pdfs may result from accumulation of bubbles
in “down flow regions, where their velocity is significantly reduced,” versus
accumulation in “downwards flowing eddies of vortices.”

Figure 8 compares the computed pdf of the bubble vertical velocity for 570
µm bubbles in field 3 (β = 0.17 and λ∗ = 0.72) with the experimental pdf
of Poorte and Biesheuvel3 for 570 µm bubbles with β = 0.21 and λ∗ = 0.54
(their figure 9b). The computed and experimental pdfs have similar structure
and are positively-skewed. Thus, the present findings are consistent with the
experimental predictions of Poorte and Biesheuvel3. Similar observation is also
made when comparing pdfs that are negatively skewed. An example is shown
in Figure 9, which provides the computed pdf of the bubble vertical velocity for
400 µm bubbles in field 2 (β = 0.60 and λ∗ = 3.99) and depicts the experimental
data of Poorte and Biesheuvel3 for 340 µm bubbles with β = 0.44 and λ∗ =
3.56 (their figure 10b); both the computed and experimental pdfs are slightly
negatively skewed.

Analysis of computed data from all parameters considered indicates that the
“bias” of the bubble vertical velocity pdf toward positive or negative values has
an apparently complex dependence upon β and λ∗. Additional investigation is
necessary to determine how these (and possibly other) parameters impact the
nature of asymmetry of bubble vertical velocity pdfs as turbulence level changes.
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3.3.2 Statistics of Local Flow

Pdfs of the local fluid velocities seen by the bubbles along their paths have been
obtained for all parameters considered in the analysis. In all cases, results have
been obtained using the experimental CL and CL = 0. Results indicated that
pdfs of the local transverse velocity seen by the bubbles are nearly Gaussian,
and revealed insignificant differences between predictions obtained using the
experimental lift and no-lift cases. On the other hand, the data show that pdfs
of the local vertical velocity are not symmetric, but exhibit the same type of
asymmetry as the pdfs of the vertical bubble velocity. For brevity, detailed
discussion of these results is omitted.

3.3.3 Statistics of Relative Velocity

Figure 10 shows pdfs for of bubble Reynolds numbers for various bubble radii
in fields 1 and 3. For field 3 (low turbulence), the pdfs are approximately sym-
metric, with one exception, and are very narrow. For field 1 (high turbulence),
the pdfs are non-symmetric and are significantly wider than in field 3. Thus,
spreading of the Reynolds number pdfs occurs as the turbulence level increases.
Figure 10 shows that spikes in the pdfs occurs around Reb = 20, for both field
1 and field 3. We believe that these spikes result from the abrupt transition in
drag force correlations used at this Reynolds number.

Mean bubble Reynolds numbers (〈Reb〉) were also calculated and compared
to the quiescent rise bubble Reynolds numbers, Req. These results are shown
in Figure 11. For field 3, 〈Reb〉 is slightly smaller than Req, but is slightly
larger than Req for field 1. Consistent with earlier observations, two competing
mechanisms may explain this behavior. A slightly elevated 〈Reb〉 would occur
when the bubbles spend more time in down-flow regions, which results in a
slightly higher relative velocity. A slightly reduced 〈Reb〉 would occur as the
turbulence reduces the mean rise velocity which leads to a reduction in relative
velocity and hence in Reb. Consistent with the wider Reb pdfs observed as
turbulence level increases, Figure 11 also shows a corresponding increase in the
maximum value of Reb. A corresponding decrease in the minimum value of Reb

also occurs. Similar trends are observed with fields 2 and 4 (not shown).
Comparison between experimental and zero lift cases are shown in Figure 12.

For field 3, the difference between experimental and zero lift is barely discernible,
while for field 1 the difference is small but noticeable. In the latter case, 〈Reb〉 is
slightly larger when the lift force is accounted for than when it is ignored. This
trend is consistent with earlier observation that the lift force moves bubbles to
the down-flow sides of eddies, which results in an increase in relative velocity
and hence, on average, of Reb. Similar results are also obtained for fields 2 and
4 (not shown).

3.3.4 Statistics of Vorticity

As shown in Figure 13, for field 3 (low turbulence) the pdf of vorticity seen by
bubbles (of radii 20 and 600 µm) is very close to the vorticity pdf of the isotropic
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turbulent field. Specifically, the mean vorticity seen by the bubbles is slightly
less than the the mean vorticity of the flow. The same observation is made for
field 4 (not shown).

For field 1 (high turbulence), also shown in Figure 13, analysis indicates that
10 µm bubbles see a mean vorticity slightly less than that of the flow field, and
the pdf of the vorticity seen by these bubbles is slightly distorted toward lower
values compared to the pdf of the field vorticity. On the other hand, the pdf
of 600 µm bubbles is much broader than that of the flow, with a significantly
larger mean value.

Comparison is made between the vorticity pdfs of Figure 13, the Reb pdfs
of Figure 10 and the maximum, mean, minimum and quiescent rise Reb of Fig-
ure 11. In weak turbulence, the behavior of bubbles of all sizes considered is
mildly affected by the turbulence; thus, the bubbles tend to sample the mean
flow, and consequently the pdfs of vorticity experienced by the bubbles are
nearly identical to that of the flow. When turbulence is strong, however, the
behavior of tiny, 10-20 µm bubbles differs significantly from that of the larger,
600 µm bubbles. The tiny bubbles tend to behave like flow tracers, as drag
dominates and slip is negligible, and consequently the pdf of vorticity experi-
enced by these bubbles remains close to that of the flow. Larger bubbles, on
the other hand, can be efficiently captured by the turbulent eddies, and thus
exhibit broader pdfs of vorticity and Reynolds number.

The effect of the lift force on the vorticity seen by the bubbles is examined
in Figure 14. Included in these results are predictions for fields 1 and 3; results
for fields 2 and 4 show similar trends and are omitted. Figure 14 shows that
when the lift force is ignored, the bubbles see on average a slightly larger vor-
ticity. This trend is consistent with the earlier observation that the lift force
tends to move bubbles preferentially to the periphery of the eddies, where they
accordingly see smaller vorticity and larger downflow velocity.

3.3.5 Statistics of Lift Forces

From the recorded values of bubble velocity, fluid velocity and vorticity, a de-
tailed statistical analysis was performed of the drag and lift forces experienced
by the bubbles. The study of the drag forces reveal trends that closely mirror
those established based on the analysis of bubble Reynolds numbers. Conse-
quently, we focus primarily on the behavior of lift forces.

Figure 15 shows the mean total lift, 〈L〉, and drag, 〈D〉, forces for different
sizes of bubbles in fields 1 and 3. As expected, for both fields 1 and 3, both the
total drag and lift forces increase rapidly with bubble radius. Note, however,
that mean total drag is smaller in field 1 (high turbulence) than it is in field 3
(low turbulence), whereas the opposite is true for the lift force. This trend is
most evident for the larger bubble sizes. The reduction of the mean total drag
with increasing turbulence is consistent with earlier observation that, within
the parameter range considered, turbulence tends to suppress the bubble rise
velocities and the mean slip velocities. The increasing importance of lift forces
as turbulence levels increase is also expected, given the increasing tendency
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of bubbles to be trapped by turbulent eddies, and consequently to experience
larger vorticity.

Additional insight into the significance of the lift force can be gained from
Table 4, which provides the ratio of lift to drag forces for different bubble sizes.
In particular, the table indicates that in fields 2–4, the mean lift force is dom-
inated by the mean drag, as the ratio 〈L〉 / 〈D〉 remains below 3%. In field
1, however, the mean total lift force is more significant, reaching 15% of the
total drag for the 500 µm bubbles. Thus, in the present parameter regime, the
magnitude of the mean lift becomes more significant with increasing turbulence
level and bubble size.

Figures 16 and 17 show pdfs of the vertical component of the lift force,
Lz, for fields 3 and 1, respectively. In field 3 (low turbulence), the pdfs are
nearly symmetric and centered when the bubble radius is 100 µm or smaller,
but are asymmetric with long negative tails when the bubble size is larger. In
field 1 (high turbulence), the pdfs of Lz are also approximately symmetric and
centered for small bubbles, namely when the radius is 120 µm or smaller. For
larger bubble radii, the pdfs become asymmetric. However, unlike the pdfs in
field 3, with increasing bubble radius the pdfs in field 1 develop increasingly
broader positive tails.

An immediate consequence of the results in Figures 16 and 17 is that the
mean vertical lift is negative in field 3, but positive in field 1. This can be
verified in Table 5, which provides normalized values of the mean vertical lift
in fields 1–4. As expected, weak negative mean vertical lift is observed in fields
3 and 4, but strong positive means are observed in field 1 especially at higher
bubble radii. Thus, the results provide additional insight into the increasing
significance of the lift force as the turbulence level and the bubble size increase.

The structure of the pdfs for Lz at low and high turbulence may be ex-
plained on the basis of simplified arguments. In weak turbulence the motion of
the bubbles is dominated by buoyancy forces and weakly affected by the local
hydrodynamic pressure gradients. In this case, a perturbative argument based
on the observation that when negative lift occurs, the vertical rise of the bubble
is reduced and consequently it tends to remain in the same region associated
with the negative lift event; the opposite occurs when a positive lift occurs.
Meanwhile, at high turbulence, the occurrence of a positive mean vertical lift
is consistent with the simplified cartoon in which the bubble is trapped in the
downflow region of a (horizontal) vortex core. For this quasi-steady cartoon,
the bubble is located above the vortex center, and as a result, the radial lift
force has a positive vertical component.
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4 Generalized Dispersion Analysis

4.1 Scale Decomposition of a Non-Fickian Process

In this section we review the fundamental concepts needed for the characteri-
zation of the scale-dependent dispersion of the bubbles in an isotropic turbu-
lent field. The analysis follows that of Cushman and Moroni17 and Moroni
and Cushman18, who studied the anomalous dispersion of tracer particles in a
porous medium.

To start, consider the trajectory X(t) of a single particle, which is a real-
valued random process defined on a suitable abstract probability space (Ω,A, P ).
Since the bubble trajectory results from finite forcing applied by the turbulent
flow, X(t) can be differentiated at least twice with respect to time. In this sec-
tion, we denote by the brackets 〈.〉 the expectation induced by the probability
measure P . It will be further assumed that X(t) and its time derivative are
second-order processes, i.e.

〈
‖X(t)‖2

〉
< ∞,

〈
‖dX(t)/dt‖2

〉
< ∞, ∀t.

Because the bubble dynamics are invariant to spatial and time translations,
and the analysis is being performed at equilibrium, the reference to the initial
position of the particle is irrelevant and only the random displacement ∆X(t) =
X(t) − X(0) is of interest. We denote by G(∆x, t) the probability density
function that the particle has experienced a displacement ∆x at time t from its
initial position:

G(∆x, t) = 〈δ(∆x − ∆X(t))〉 , (25)

where δ denotes the Dirac delta function. Since G is a density,

∫

R3

G(∆x, t)d(∆x) = 1.

The Fourier transform of G is given by:

Ĝ(k, t) ≡ F{G} =

∫

R3

eik · ∆xG(∆x, t)d(∆x) =
〈
eik · ∆X(t)

〉

= 〈cos(k · ∆X)〉 + i 〈sin(k · ∆X)〉 . (26)

In the context of dispersion analysis, the Fourier transform of G is often called
the self-part of the intermediate scattering function. In probability theory,
Ĝ(k, ·) is the characteristic function of the R3-valued random variable ∆X(·)

(indexed on time). Provided that 〈|∆X(t)|m〉 < ∞ for some integer m > 0, Ĝ
has continuous partial derivatives up to order m, and

∂m

∂kj1 . . . ∂kjm

Ĝ(k, t) = im
〈
∆Xj1(t) . . . ∆Xjm

(t)eik · ∆X(t)
〉

. (27)
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Let us now decompose the random displacement in terms of its mean and
fluctuating parts: ∆X(t) = 〈∆X〉 (t)+∆X ′(t). Then, from (26) it follows that

Ĝ(k, t) = eik · 〈∆X〉 (t)
〈
eik · ∆X ′(t)

〉
= eik · 〈∆X〉 (t)Ĝ′(k, t). (28)

Differentiating with respect to time, one obtains:

∂Ĝ(k, t)

∂t
= i(k · v)Ĝ(k, t) + eik · 〈∆X〉 (t) ∂Ĝ′(k, t)

∂t
. (29)

where v is used to denote the expected velocity d 〈∆X〉 /dt = d 〈X(t)〉 /dt,

which is time independent. We assume that Ĝ is sufficiently well-behaved to
satisfy the following integral equation

∂Ĝ′(k, t)

∂t
= −

∫ t

0

K̂ ′(k, τ)Ĝ′(k, t − τ) +
∂Ĝ′

∂t
(k, 0). (30)

where K̂ ′ is a dispersion kernel. Noting that ∂Ĝ′/∂t = 0 at t = 0, (29) becomes

∂Ĝ(k, t)

∂t
= i(k · v)Ĝ(k, t) −

∫ t

0

eik · 〈∆X〉 (t)K̂ ′(k, τ)Ĝ′(k, t − τ)

= i(k · v)Ĝ(k, t) −

∫ t

0

∆(k, τ)K̂ ′(k, τ)Ĝ(k, t − τ), (31)

where
∆(k, τ) = eik · [〈∆X〉 (t) − 〈∆X〉 (t − τ)] (32)

is time independent by virtue of the time invariance of the dynamics. To deter-
mine the dispersion kernel, K̂ ′, we introduce the Laplace transform (in time),

f̃(s) =

∫ ∞

0

f(τ)e−sτdτ, (33)

and from (30) we obtain

˜̂
K ′(k, s) = −

˜
∂2Ĝ′/∂t2

s
˜̂
G

′ . (34)

Differentiating the self-part of the intermediate scattering function twice in time,
one obtains

∂2Ĝ′

∂t2
= ik ·

〈
a′(t)eik · ∆X ′(t)

〉
+ ik ·

〈
v′(t)eik · ∆X ′(t)v′(t)

〉
· (ik), (35)

where v′(t) and a′(t) are the fluctuating velocity and acceleration of the bubble,
respectively. This shows that the Laplace transform of the kernel splits into two
components,

˜̂
K ′ = ik ·

˜̂
D

′
1 + ik ·

˜̂
D

′
2 · ik, (36)
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with

˜̂
D

′
1 =

˜〈
a′(t)eik · ∆X ′(t)

〉

s
˜̂
G′

,
˜̂
D

′
2 =

˜〈
v′(t)eik · ∆X ′(t)v′(t)

〉

s
˜̂
G′

. (37)

Due to the linearity of the Laplace transform, the split kernel can be inserted
into (31). Next, by applying an inverse Fourier transform we obtain the following
governing equation for the displacement density:

∂G(∆x, t)

∂t
= −∇∆x · [vG(∆x, t)]

+ ∇∆x ·

∫ t

0

∫

R3

D1(∆y, τ)G(∆x − ∆y, t − τ)d∆ydτ

+ ∇∆x ·

∫ t

0

∫

R3

D2(∆y, τ) · ∇∆x−∆yG(∆x − ∆y, t − τ)d∆ydτ (38)

Equation (38) is the general form of a convection dispersion process, involving
both time and space convolutions. It is, however, of little interest since we are
more concerned by the scale-dependent dispersion properties, as characterized

by the tensors D̂1 = ∆D̂
′
1 and D̂2 = ∆D̂

′
2. Computation of these tensors

from (37) in Laplace space is too cumbersome. An alternative computational
approach, based on (30), is presented in section 4.3 below.

4.2 Small wave-vector approximation

In this section, we focus on the small wave-vector limit ‖k‖ << 1 of the expres-
sions for scale-dependent dispersion. Taking the Laplace transform of (31), we
have:

s
˜̂
G(k, s) − Ĝ(k, 0) = i(k · v)

˜̂
G(k, s) −

˜̂
K(k, s)

˜̂
G(k, s), (39)

where K̂(k, τ) = K̂ ′(k, τ)∆(k, τ). Since G(∆x, 0) = δ(∆x), i.e. the displace-

ment at the initial time is almost surely zero, Ĝ(k, 0) = 1, ∀k; inserting this
last expression into (39) results in:

˜̂
G(k, s) =

[
s − ik · v +

˜̂
K(k, s)

]−1

. (40)

The Taylor expansion of Ĝ(k, t) from (26) around ‖k‖ ≡ k = 0 is

Ĝ(k, t) = 1 + ik 〈∆X(t)〉 −
1

2
k · 〈∆X(t)∆X(t)〉 · k + O(k3). (41)

Using 〈∆X(t)〉 = vt, the Laplace transform of the Taylor expansion of Ĝ is

˜̂
G(k, s) = s−1 + ik · vs−2 −

1

2
k · ˜〈∆X(t)∆X(t)〉 · k + O(k3). (42)
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From (40) and (42) we find to leading order the expression of the Laplace trans-

form of the kernel K̂:

˜̂
K(k, s) = k ·

[
(vv)s−1 −

1

2
˜〈∆X(t)∆X(t)〉s2

]
· k, k << 1. (43)

Comparison with (36) shows that in the limit of k → 0, D̂1 = 0 and

˜̂
D2 =

−vv

s
+

˜〈∆X(t)∆X(t)〉

2
s2. (44)

It should be noted that in the limit of small wave-vector, the generalized dis-
persion tensor D̂2 is scale independent. In the following, the small wave-vector
approximation of D̂2 is denoted D̂k↓0. Also, using the properties of the Laplace
transform, and that at t = 0 〈∆X∆X〉 = 0 together with its time derivative,
we have:

s2 ˜〈∆X∆X〉 =
˜(

d2 〈∆X∆X〉

dt2

)

which is used to convert (44) to the time domain according to:

d2 〈∆X∆X〉

dt2
= 2vv + 2D̂k↓0(t). (45)

Integrating the last equation once we have:

d 〈∆X∆X〉

dt
= 2

[
vvt +

∫ t

0

D̂k↓0(τ)dτ

]
. (46)

where 〈∆X∆X〉 represents the second moment of displacement.
On the other hand, differentiating 〈∆X∆X〉 with respect to time and using

stationarity of the dynamics also yields

1

2

d 〈∆X∆X〉

dt
= 〈∆X(t)v(t)〉 =

〈
v(t)

∫ t

0

v(τ)dτ

〉
=

∫ t

0

〈v(t)v(τ)〉 dτ

= vvt +

∫ t

0

〈v′(t)v′(τ)〉 dτ = vvt +

∫ t

0

〈v′(t)v′(t + τ)〉 dτ

(47)

Comparing (46) with (47), one deduces that

D̂k↓0(τ) = 〈v′(t)v′(t + τ)〉 , (48)

which is in agreement with Taylor’s theory33;34 where the Lagrangian fluid veloc-
ity is replaced by the Lagrangian bubble velocity. In other words, the expected
velocity and its two-times correlations are all that are needed to characterize
the evolution of the tensor of second moments of displacements.
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4.3 Implementation

We now consider the application of the theory above to the analysis of bubble
dispersion in turbulence. It is first remarked that the turbulent fields used in
this study are homogeneous and stationary; accordingly, the bubbles are sub-
jected to external forces that are isotropic in the transverse plane (x and y) and
homogeneous along the longitudinal (also vertical or z) direction. As a result,
the expected displacement 〈∆X(t)〉 and its (constant) time derivative v have
only one non-zero component along the homogeneous z direction, and the dis-
persion tensor is diagonal, allowing for separate analysis along the transverse
and longitudinal directions. In the following we use subscripts t and l to dis-
tinguish between transverse and longitudinal components respectively. We also
denote 1t and 1l as unit vectors in the transverse and longitudinal directions
respectively.

Empirical estimates of the expectations appearing in the various equations
to be solved are based on the available sample set of bubble trajectories, with
all bubbles having the same radius and being in the same turbulent field. For
instance, the self-parts of the intermediate scattering functions are estimated
by

Ĝt,l(k, t) =
〈
eik1t,l · ∆X(t)

〉
≈

1

N

N∑

i=1

eik1t,l · ∆xi(t), (49)

where k is the (scalar) wavenumber, ∆xi(t) = xi(t) − xi(0) and {xi(t), i =
1, . . . , N} is the sample set of trajectories. Similarly, we denote {vi(t), i =
1, . . . , N} as the sample set of the bubbles’ instantaneous Lagrangian velocities.
The self-parts of the intermediate scattering functions satisfy:

∂Ĝt,l

∂t
(k, t) = ik1t,l · vĜt,l(k, t) −

∫ t

0

K̂t,l(k, τ)Ĝt,l(k, t − τ)dτ.

Note that the first term on the right-hand side of the equation above vanishes
for the transverse direction as v ·1t = 0. Differentiating in time and rearranging
terms yields the kernel equation:

K̂t,l(k, t) = −
∂Ĝt,l(k, t)

∂t2
+ik1t,l ·v

∂Ĝt,l(k, t)

∂t
−

∫ t

0

K̂t,l(k, τ)
∂Ĝt,l(k, t)

∂τ
dτ. (50)

This kernel equation is solved for t ∈ [0, T ] through a time integration procedure.
Let us define the time-step ∆t = T/n such that tj = j∆t. The sample set esti-

mate of Ĝt,l is first computed for a given wavenumber k at times tj , j = 0, . . . , n,
using (49). To simplify the notation, we suppress the explicit dependence on k
in the expressions below. The estimate of first and second time-derivatives of

Ĝ, respectively denoted
˙̂
G and

¨̂
G, are computed at the discrete times tj ; at the

initial time tj = 0 we use the exact expressions,

˙̂
Gt,l(0) = ik1t,l · v, (51)

¨̂
Gt,l(0) = −(k1t,l) · vv · (k1t,l), (52)
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where the mean velocity vector v and second moment velocity tensor vv are
taken as sample estimate values:

v ≈
1

Nn

N∑

i=1

n∑

j=0

vi(tj), vv ≈
1

Nn

N∑

i=1

n∑

j=0

vi(tj)vi(tj).

At intermediate discrete times, the derivatives of Ĝ are estimated using stan-
dard, second-order, centered differences; for j = 1, . . . , n − 1,

˙̂
Gt,l(tj) =

Ĝt,l(tj+1) − Ĝt,l(tj−1)

2∆t
, (53)

¨̂
Gt,l(tj) =

Ĝt,l(tj+1) − 2Ĝt,l(tj) + Ĝt,l(tj−1)

∆t2
. (54)

At tn = T , the following one-sided, second-order approximations are used:

˙̂
Gt,l(tn) =

3Ĝt,l(tn) − 4Ĝt,l(tn − 1) + Ĝt,l(tn − 2)

∆t
, (55)

¨̂
Gt,l(tn) =

2Ĝt,l(tn) − 5Ĝt,l(tn − 1) + 4Ĝt,l(tn − 2) − Ĝt,l(tn − 3)

∆t2
. (56)

We now proceed with the discrete resolution of the kernel equation (50) using
a time stepping scheme, using the starting value

K̂t,l(t = 0) = −
¨̂
Gt,l(0) + ik1t,l · v

˙̂
Gt,l(0).

Assuming that the kernel values have been computed at the discrete times ti,
0 ≤ i ≤ m, then the kernel value at time tm+1 satisfies the linear equation

K̂t,l(tm+1) = −
¨̂
Gt,l(tm+1) + ik1t,l · v

˙̂
Gt,l(tm+1)

−
∆t

2
K̂t,l(t0)Ĝt,l(tm+1) +

∆t

2
K̂t,l(tm+1)Ĝt,l(t0)

+ ∆t

m∑

j=1

K̂t,l(tj)Ĝt,l(tm+1−j), (57)

where the convolution has been approximated using Simpson’s rule. The gen-
eralized dispersion coefficients D̂(k, τ) are then deduced from

D̂t,l(k, τ) = K̂t,l(k, τ)/k2.

We note that both D̂t(k, τ) and D̂l(k, τ) must decay to 0 for all wavenumbers
k in order for the dispersion process to transition to Fickian.

4.4 Detailed analysis for 400 µm bubbles in Field 2

To illustrate the methodology outlined above, we show a detailed step-by-step
analysis of the dispersion of 400 µm bubbles in field 2. The sample set consists
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of the trajectories and velocities of 5,000 bubbles, recorded every ∆t = 0.1 over
a time span of Tr = 200. In order to provide a graphical illustration of the
dispersion of the bubbles in the turbulence, we plot in Figure 18 the trajectories
of 100 bubbles over the time span of the analysis.

The self-part of the intermediate scattering function in the transverse and
longitudinal directions, respectively Ĝt and Ĝl, are estimated using (49). To
improve the statistical convergence of the estimates, different initial positions
along the bubbles trajectories are considered. Indeed, provided that the initial
positions along a bubble trajectory are taken at time intervals greater than the
integral time-scale of the flow, the displacement from these initial positions may
be considered as statistically independent. Figure 19 shows the resulting sample-
based estimates of the real and imaginary parts of Ĝt(k, t). Since Ĝt is the
Fourier transform of the transverse displacement pdf, and since the turbulence
is isotropic in the transverse plane, the imaginary part is expected to be zero by
symmetry (negative and positive displacements of same magnitude are equally

likely). This is verified in Figure 19 where Im(Ĝt) takes only small values
(compared to the real part), which can be attributed to sampling errors. Since

the average velocity in the transverse direction is zero, Re(Ĝt) can be interpreted
as the probability that the bubbles remain in a neighborhood of size 2π/k of
their initial positions after a time lag τ . Figure 19 shows that as k increases, i.e.

as the extent of the neighborhood shrinks to zero, the probability that bubbles
remain in the corresponding neighborhood goes to zero in shorter and shorter
time scales.

Figure 20 shows the real and imaginary parts of Ĝl. Along this direction
the bubbles have a non-zero average velocity, and the displacement pdf in the
longitudinal direction is no longer expected to be centered or symmetric. As
a result, the imaginary part of Ĝl takes significant positive values, denoting
a positive mean displacement. However, for given wavenumber k > 0, the
magnitude |Ĝl| goes to zero as time increases. Again, the increasing decay rate

of |Ĝl| with time, for increasing k, denotes a faster decay of the probability that
bubbles remain in a neighborhood with characteristic size 2π/k around their
initial position.

The dispersion kernels K̂t,l are then computed, as discussed in section 4.3,

to obtain the generalized dispersion coefficients D̂t,l(k, τ). The real part of
the generalized dispersion coefficient in the transverse direction is shown in
Figure 21. The imaginary part of D̂t, not shown, is negligible compared to the
real part and is due to sampling errors. Figure 21 shows that D̂t is weakly
dependent on k over the range of wavenumbers analyzed, but exhibits a slightly
higher decay rate as k increases. The plot also demonstrates the non-Fickian
character of the transverse dispersion process, as non-trivial variation of D is
observed for all length scales.

In order to verify the numerical predictions of the generalized dispersion
coefficients, we compare the computed values of D̂t for small wavenumbers
with independent asymptotic estimates. As discussed in section 4.2, in the
limit k → 0, D̂t tends to the two-times velocity correlation function. For the
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present case, the latter is shown in Figure 22. Comparison of Figures 21 and 22
shows that there is a close agreement between the two estimates, which provides
confidence in the numerical procedure for estimating the dispersion coefficients.

The real and imaginary part of the generalized dispersion coefficient in the
longitudinal direction are shown in Figure 23. Here, the dependence of D̂l

on the wavenumber is much more important, with the decay timescale of D̂l

increasing significantly as k increases. Thus, large scales take longer times than
small scales to reach the Fickian regime. Also, comparison with Figure 21
shows that dispersion in the longitudinal direction takes a longer time than
in the transverse to approach a Fickian process. This can also be observed
in Figure 22 by comparing the decay rates of the velocity correlations in the
transverse and longitudinal directions.

In order to further verify the predictions, and to make a connection with
classical Fickian analyses, we examine in Figure 24 the time evolution of the
variances of the displacement,

〈
∆X ′(τ)2

〉
, in the transverse and longitudinal

directions. The linear asymptotic behavior (at large times) predicted by the
analysis is verified. Specifically, the displacement curves show that the vari-
ances increase linearly after time lags τ ' 0.2 and 0.3 in the transverse and lon-
gitudinal directions respectively. In addition, there is a fairly good agreement
between the asymptotic slopes of displacement curves and the same slopes pre-
dicted from the integration of the generalized dispersion coefficients computed
for a small wavenumber, k = 0.1; see (46). This agreement provides additional
confidence in the predictions, and illustrates how generalized and Fickian dis-
persion analyses can be connected when appropriate.

4.5 Effect of Bubble Radius and Turbulence Intensity

The generalized dispersion analysis has been performed for all 4 turbulent fields,
and for bubbles with radius 40 and 400 µm.

Figure 25 shows the real and imaginary parts of the generalized dispersion
coefficient in the longitudinal direction for 40 µm bubbles and fields 1-4. It
can be seen that the main impact of the turbulence is to decrease the decay
timescale of D̂l. Specifically, it takes roughly 0.1 second for D̂l to go to zero in
field 1, while a time lag of more than 10 seconds is necessary to reach the Fickian
regime in field 4. Similar results are found for the analysis of the displacement
in the transverse direction (not shown). These observations imply that the
trajectories of the bubbles remain correlated over a longer time period as the
turbulence level decreases with as a result anomalous dispersion over longer
(dimensional) time scales. Additional insight into the correlation decay can be
gained from Figure 26, where the evolution of the two-time velocity correlations
in the transverse and longitudinal directions is plotted in terms of the normalized
time lag. One can observe that for these bubbles the decay time scale is weakly
dependent on the turbulence intensity. By virtue of normalization conventions,
one consequently concludes that, for the 40 µm bubbles, the transition from
anomalous to Fickian diffusion occurs over time periods that scales with the
turbulence integral time scale, for the entire range of dissipation rates considered
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in the analysis.
Figure 27 shows the real and imaginary parts of the generalized dispersion

coefficient in the longitudinal direction for the 400 µm bubbles in fields 1-4. It
shows that for the two-highest turbulence levels (fields 1 and 2), D̂l has quali-
tatively the same behavior as for the 40 µm bubbles. However, the longitudinal
generalized dispersion coefficients have larger value for the larger bubbles, but
decay at a slightly higher rate.

Contrary to the results for fields 1 and 2, the generalized dispersion coeffi-
cient for 400 µm bubbles in the longitudinal direction for fields 3 and 4 exhibits
a qualitatively different behavior than that of the 40 µm bubbles. Specifically,
the decay of the real and imaginary parts of D̂ exhibit large oscillations and sig-
nificant negative values, even for the smallest wavenumbers analyzed. Fickian
behavior is evidently not approached within the time span depicted.

The oscillations in D̂l for fields 3 and 4 in Figure 27 appear to be related
to the “crossing trajectory effect.” As discussed by Yudine 35, Corrsin36, Snyder
and Lumley19 and Mazzitelli and Lohse20, this phenomenon occurs when, due
to buoyancy effects, bubbles rapidly leave flow regions where the velocity is
highly correlated and enter regions where flow velocities are more and more
de-correlated. The positive and negative oscillations in D̂l are only evident
for larger bubbles in the lower turbulent fields, or at low turbulence intensity
β = u′

VT
. For 400 µm bubbles in field 3, β ≈ .2. Both Mazzitelli and Lohse

20 and Spelt and Biesheuvel13 observed similar behavior in bubble diffusivities
and velocity correlation functions at low turbulence intensity, respectively with
β of about 0.5 and 0.1.

Analysis of the generalized dispersion coefficient in the transverse direction
for 400 µm bubbles, shown in Figure 28, reveals oscillatory behavior for fields
3 and 4, whereas for fields 1 and 2 D̂t decays in nearly monotonic fashion.
However, contrary to the observed longitudinal behavior, small wavenumber
limits are observed in all cases, suggesting that dispersion in the transverse
direction can be approximated as a convolution-Fickian process at small times,
and as Fickian process at larger times.

Figure 29 shows the the two-time velocity correlations for 400 µm bub-
bles in the transverse and longitudinal directions, again plotted in terms of
the non-dimensional time lag. Contrary to the behavior of the 40 µm bubbles
(Figure 26), the two-time velocity correlations of the 400 µm bubbles show sig-
nificant dependence on the turbulence level. The dependence of the velocity
correlations on turbulence intensity is consistent with earlier observations for
the generalized dispersion coefficients.
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5 Conclusions

Rise and dispersion of air bubbles in water under isotropic turbulence con-
ditions are analyzed using a simplified one-way coupling model. The model
combines DNS of single-phase flow, with a Lagrangian equation of motion for
bubble dynamics. The latter accounts for drag, lift, pressure and added mass
effects. The analysis assumes normal gravity conditions, and considers bubble
radii ranging from 10-600 µm and dissipation rates in the range 10−5 – 0.3
m2/s3.

A statistical analysis is first conducted of the rise of microscopic bubbles,
and of forces affecting their motion. In particular, the analysis indicates that:

1. The mean rise of the microbubbles is suppressed by turbulence, and the
amount of suppression increases as the turbulence intensity increases. The
results are thus consistent with established trends, and particularly with
available computational1 and experimental2;3 data under relevant flow
conditions.

2. Consistent with the analyses of Spelt and Biesheuvel2 and Mazzitelli et

al.32, the suppression of the bubble rise velocity is promoted by lift force
experience, which tend to move bubbles to regions of downward velocity.
This effect is more pronounced as the bubble size increases.

3. Consistent with the experimental measurements of Poorte and Biesheuvel
3, in all cases considered the pdfs of the transverse bubble velocity are
centered around 0, symmetric and nearly Gaussian. The pdfs of the ver-
tical bubble velocity are generally asymmetric, and may be positively or
negatively biased according to the turbulence intensity and Taylor scale.
The variance of the vertical and transverse velocity pdfs increases as the
turbulence level increases.

4. At low turbulence levels, the pdfs of the bubble Reynolds number (rela-
tive velocity) pdfs are nearly symmetric. As the dissipation rate increases,
these pdfs become asymmetric and their variance increases. The mean
bubble Reynolds numbers in turbulence are slightly smaller than the cor-
responding quiescent values.

5. At low turbulence levels, the pdfs of vorticity experienced by the bubbles
are nearly identical to the vorticity pdf of the mean flow, and this close
agreement occurs across the entire range of bubble radii considered in the
analysis. At high turbulence levels, the vorticity pdfs for tiny bubbles
remain close to that of the mean flow, whereas large bubbles have signif-
icantly broader pdfs. This trend is consistent with the observation that
tiny bubbles have small slip velocities, and consequently tend to behave
as Lagrangian markers, whereas larger bubbles are more easily captured
by turbulent eddies, and thus experience higher vorticity.

6. The mean lift force experienced by the bubbles is a small fraction of the
mean drag force, though this fraction increases as turbulence intensity
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and bubble radius increase. The mean drag force in high turbulence is
noticeably less than in low turbulence, which is consistent with suppression
of the mean rise velocity. For bubbles smaller than 120 µm, the pdf of
the vertical lift force is nearly symmetric and centered around 0, for all
turbulence levels considered. As the turbulence level increases, the vertical
lift pdfs become asymmetric and develop a positive mean. This behavior
is consistent with increased likelihood of trapping of the bubbles on the
downflow side of concentrated vortices, which would lead to the observed
bias.

Analysis of bubble dispersion is conducted using a generalized length and
time scale dependent model that can capture anomalous diffusion, convolution-
Fickian, and classical Fickian behaviors. The model is an adapted from the
theory developed by Cushman and Moroni17. A small wavenumber analysis is
first conducted, which enables us to connect, when appropriate, the general-
ized dispersion predictions with classical dispersion results. Application of the
generalized dispersion model to the computed bubble trajectories indicates that:

7. For 40 µm bubbles, the dispersion process is initially anomalous, but tran-
sitions to Fickian over a time span that scales with the integral time scale
of turbulence. This trend persists for the entire range of turbulence levels
considered in the analysis.

8. For 400 µm bubbles, a qualitatively similar behavior is observed for high
turbulence levels. In particular, transition to Fickian dispersion occurs
over similar time scales as the 40 µm bubbles. At low turbulence levels,
however, oscillations are observed in the generalized dispersion coefficients,
which also exhibit dependence on spatial lengthscales. Thus, in these
situations, transition to Fickian dispersion is not observed within the time
span of the analysis.
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Field 1 2 3 4

L̃ (m) .0125 .0250 .090 .157
Lc (m) .00199 .00398 .014 .025

U c (m/s) .503 .251 .070 .04
t̃c (s) .00396 .0159 .200 .625
˜tK (s) .00198 .00791 .102 .313
t̃L (s) .0626 .250 3.23 9.90
η̃ (µm) 44 88 315 550

λ̃ (µm) 828 1650 5960 10400
ε̃ (m2/s3) .256 .016 9.58× 10−5 1.02× 10−5

g .077 .617 28.6 153.

Table 1: Turbulent Fields Modeled. L̃ is the side length of the domain, Lc is
the characteristic length scale, U c is the characteristic velocity, t̃c ≡ Lc/U c

is the characteristic time scale, ˜tK =
√

ν̃/ε̃ is the Kolmogorov time scale,

t̃L = ˜tKRe1/2 is the integral time scale, η̃ is the Kolmogorov microscale,

λ̃ =
√

15ν̃u′2/ε̃ is the Taylor length scale, ε̃ is the dissipation rate, and g is

the dimensionless gravity.
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Bubble Radius Field 1 Field 2 Field 3 Field 4
240 µm .37 .62 .77 .83
400 µm .38 .59 .82 .82

Table 2: Ratio of the mean turbulent rise velocity and the quiescent rise velocity.
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Field 1 Field 2 Field 3 Field 4
With Lift .37 .62 .77 .83

Zeroed Lift .39 .66 .81 .84

Table 3: Observed rise velocity for 240 µm bubbles in turbulence as a fraction
of quiescent rise velocity (with lift, top row, and zeroed lift, bottom row).
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Bubble Radius Field 1 Field 2 Field 3 Field 4
120 µm 4.15% .0348% .447% .176%
240 µm 9.97% 1.29% .450% .381%
400 µm 14.7% 1.68% 1.51% .936%
500 µm 15.6% 1.15% 2.34% 1.48%

Table 4: Ratio 〈L〉 / 〈D〉 of the mean total lift and drag forces.
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Bubble Radius Field 1 Field 2 Field 3 Field 4
120 µm .0415 −.000112 −0.00705 −0.00176
240 µm .0999 .0129 −0.00458 −0.00129
400 µm .147 .0168 −0.0150 −0.00939
500 µm .156 .0114 −0.0233 −0.0148

Table 5: Mean lift force in the vertical direction 〈Lz〉 normalized by mean
magnitude of drag force 〈|D|〉.
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Figure 1: Mean rise velocity of bubbles in turbulence. Predictions for quiescent
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Figure 2: Mean rise velocity in turbulence versus bubble radius with experi-
mental CL and zero lift. Top: results for field 4; bottom: results for field 2.
Predictions for quiescent flow are also plotted. In both fields, the bubbles rise
faster when the lift force is ignored.
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for field 4 with CL = 0 and the experimental CL.
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Figure 6: Pdfs of the bubble vertical velocity pdfs for 40 µm and 400 µm bubbles
in field 4 (rows 1 and 2) and field 3 (rows 3 and 4). Plotted on the left column
are results obtained with experimental CL, and on the right column predictions
with CL = 0.

42



CL 6= 0 CL = 0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-4 -3 -2 -1  0  1  2  3  4

pd
f’

Reduced bubble vertical velocity (Field 2 with lift)

40 micron bubble
Gaussian

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-4 -3 -2 -1  0  1  2  3  4

pd
f’

Reduced bubble vertical velocity (Field 2 no lift)

40 micron bubble
Gaussian

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-4 -2  0  2  4  6

pd
f’

Reduced bubble vertical velocity (Field 2 with lift)

400 micron bubble
Gaussian

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-4 -2  0  2  4  6
pd

f’
Reduced bubble vertical velocity (Field 2 no lift)

400 micron bubble
Gaussian

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-4 -3 -2 -1  0  1  2  3  4

pd
f’

Reduced bubble vertical velocity (Field 1 with lift)

40 micron bubble
Gaussian

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-4 -3 -2 -1  0  1  2  3  4

pd
f’

Reduced bubble vertical velocity (Field 1 no lift)

40 micron bubble
Gaussian

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-4 -2  0  2  4  6

pd
f’

Reduced bubble vertical velocity (Field 1 with lift)

400 micron bubble
Gaussian

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

-4 -2  0  2  4  6

pd
f’

Reduced bubble vertical velocity (Field 1 no lift)

400 micron bubble
Gaussian

Figure 7: Pdfs of the bubble vertical velocity pdfs for 40 µm and 400 µm bubbles
in field 2 (rows 1 and 2) and field 1 (rows 3 and 4). Plotted on the left column
are results obtained with experimental CL, and on the right column predictions
with CL = 0.
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Figure 8: Top: computed pdfs of the normalized bubble vertical velocity for 570
µm bubble in field 3 (β = 0.17 and λ∗ = 0.72). Bottom: experimental results of
Poorte and Biesheuvel3 for 570 µm bubbles with β = 0.21 and λ∗ = 0.54 (solid
line is pdf of vertical velocity, dashed line is Gaussian, left vertical line is zero
vertical velocity, and right vertical line is rise velocity in still fluid).
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Figure 9: Top: computed pdfs of the normalized bubble vertical velocity for 400
µm bubble in field 2 (β = 0.60 and λ∗ = 3.99). Bottom: experimental results of
Poorte and Biesheuvel3 for 340 µm bubbles with β = 0.44 and λ∗ = 3.56 (solid
line is pdf of vertical velocity, dashed line is Gaussian, left vertical line is zero
vertical velocity, and right vertical line is rise velocity in still fluid).
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1 (bottom). The bubble radius is indicated.
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Figure 11: Maximum, mean, minimum, and quiescent rise bubble Reynolds
number versus bubble radius for field 3 (top) and field 1 (bottom). Note the
difference in Reb scales.
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Figure 12: Mean and quiescent rise bubble Reynolds number versus radius for
field 3 (top) and field 1 (bottom). Results with experimental lift and CL = 0
are shown.

48



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  5  10  15  20  25  30  35  40

pd
f (

ep
s 

= 
9.

57
8E

-5
 m

2 /s
ec

3 )

Reduced Vorticity

Vorticity 20 micron  
Vorticity 600 micron

Field Vorticity     

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  5  10  15  20  25  30  35  40

pd
f (

ep
s 

= 
.2

55
8 

m
2 /s

ec
3 )

Reduced Vorticity

Vorticity 10 micron  
Vorticity 600 micron

Field Vorticity

Figure 13: Pdf of the normalized vorticity felt by bubbles for field 3 (top) and
field 1 (bottom). The pdf of the normalized field vorticity is also plotted for
comparison.
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Figure 15: Magnitude of total mean lift force 〈L〉 and magnitude of total mean
drag force 〈D〉 in field 1 (top) and field 3 (bottom).

51



 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 2e+08

-1.2e-07 -1e-07 -8e-08 -6e-08 -4e-08 -2e-08  0  2e-08

pd
f (

fie
ld

 3
)

Lift Force Lz (newtons)

100 micron bubble
160 micron bubble
240 micron bubble
320 micron bubble

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

-5e-06 -4e-06 -3e-06 -2e-06 -1e-06  0  1e-06

pd
f (

fie
ld

 3
)

Lift Force Lz (newtons)

400 micron bubble
500 micron bubble
600 micron bubble

Figure 16: Pdfs of the vertical component of the lift force, Lz, in field 3.
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Figure 17: Pdfs of the vertical component of the lift force, Lz, in field 1.
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Figure 18: Trajectories of 400 µm bubbles in field 2. The trajectories of 100
bubbles are plotted. Left plot: top view. Middle and right plots: side-views.
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Figure 19: Real (left) and imaginary (right) part of Ĝt(k, t) (equation (49)) for
400 µm bubbles in field 2.
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Figure 20: Real (left) and imaginary (right) part of Ĝl(k, t) (equation (49)) for
400 µm bubbles in field 2.
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µm bubbles in field 2.
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Figure 25: Real (left) and imaginary (right) parts of generalized dispersion
coefficients in longitudinal direction for 40 µm bubbles in fields 1-4
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Figure 26: 〈v′(t)v′(τ)〉 in the transverse (top) and longitudinal (bottom) direc-
tion for 40 µm bubbles in fields 1-4.
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Figure 27: Real (left) and imaginary (right) parts of generalized dispersion
coefficients in longitudinal direction for 400 µm bubbles fields 1-4

(
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)
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Figure 28: Real component of generalized dispersion tensor Re(D) in transverse
direction for 400 µm bubbles (field 1 upper left, field 2 upper right, field 3 lower
left, field 4 lower right)
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Figure 29: 〈v′(t)v′(τ)〉 in the transverse direction (top) and in the longitudinal
direction (bottom) for 400 µm bubbles in all fields.

65


