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Instantaneous torques driving the turbulent flow between two rotating disks equiped 

with blades and enclosed in a fixed cylindrical cell are measured. The flow is studied varying 

the Reynolds number for different angular velocity ratios S of the disks in order to extract 

similitude laws. It is shown that the mean torques driving the disks do not depend on the 

viscosity whatever the rotation angular velocity ratio -1.33<S<-0.69. As far as the viscosity 

dependance is not too large, the torques obey a similitude law so the study can be restricted to 

the study of the flow in the range S =[-1;+1]. Global transitions are observed versus S, shown 

of by abrupt changes in both the means and the fluctuations of the torques. A transition 

occuring at S=-0.69 is clearly identifyed corresponding to the well known one to two cells 

transition previously observed for smooth disks and similarities beetween smooth and  bladed 

disks are discussed. The torque measurements also suggest other transitions in the co-rotating 

regime (S >0).  
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1. Introduction 

The flow between two rotating disks is of practical importance in many industrial 

flows. On the fundamental point of view, this flow is very complicated, and depends 

drastically on the boundary conditions [1]. Simple questions as : does the flow still rotate for 

very high Reynolds numbers in the counter rotation regime? has standed as a major problem 

[2]. Most studies, theoretical, experimental or numerical are devoted to the problem initially 

set by von-Karman : the flow between two infinite smooth disks. When the disks are not 

infinite, the condition imposes severe constraints on the flow leading to very different 

solutions [3]. In the case of smooth disks, it is established that within the case of the counter-

rotating regime, there is a transition for a given Eckmann number and rotation velocity ratio 

from one cell to two cells structure (primary reported by Lugt & Haussling [4], and checked 

numerically by Dijkstra & Heijst [3]). This transition corresponds to the emergence of a 

detached shear layer on the disk having the slower angular velocity.  

The flow considered in this paper, though concerning finite disks, differs from the 

previous studies because the disks are equiped with blades pushing the flow (see figure 1). 

This type of flow, and especially in the exact counter rotating regime is now extensively used 

in the aim of studying fundamental aspect of developped turbulence. The reason comes from 

appreciable advantages due to the closed flow (compared to classical open flows) that has 

been successfully used for comprehension of turbulence as for instance : dynamical structures 

observations [5] and characterizations [6], global power fluctuations [7,8], drag reduction by 

polymer additives [9], passive scalar intermittency [10], particule accelerations [11] and 

magneto-hydrodynamics turbulence [12]. Particularly, this flow was found to follow the 

Kolmogorov K41 scaling for the global mean dissipation [13,14] (no viscosity dependancy) 

for the exact counter-rotating regime. 
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Our idea is to characterize the flow produced in this geometry (with blades) for 

different angular velocities of both disks (differencial rotation) and to compare to previous 

results found in the literature about smooth disks. Only few articles are devoted to the 

characterization of the global flow properties in this geometry. To our knowledge, Marié et al. 

[15] characterized the mean kinetic momentum by means of LDV measurements in the excact 

counter rotating regime. Very recently, Ravelet [16] explored the flow in the counter-rotating 

regime (S≤0) by means of global torques PIV velocity measurements. It is found a global 

transition from a one cell to a two cells for S=-0.78 similar to those observed for smooth 

disks. In the work of Ravelet et al.[17], this global transition is found to be spontaneous (or 

discontinuous) for the very specific case of curved blades and for the exact counter-rotating 

regime (S=-1). However the appearance of this discontinuity is related to the curvature of the 

blades and do not concerns our study since the blades pushing the flow in our geometry are 

straight . 

The characterization is obtained by mean of instantaneous torque measurement on 

both disks. We are interested in the evolution of the mean torques and their fluctuations (rms 

value) for both disks versus the angular rotation ratio. The present work is organized as 

follow; the experimental set up is first presented in sec. 2 and concerns the experimental 

geometry, torque measurements and flow visualization. Section 3 is a preliminary and will 

recall the momentum budget equation for this geometry as well as some symmetry properties 

of the flow forcing. The results will be presented in section 4 and discussed in three parts in 

section 5. These three discussions are about similtude laws, the one to two cells transition for 

the counter rotating regime and the dependence of the torque fluctuations on the angular 

velocity ratio.  
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2. Experimental set-up 

 

2.1 Experimental Cell 

Titon & Cadot [14] have previously described this experimental cell in detail. The 

turbulence is generated in a closed cylindrical cell (V=11 liters) between two rotating stirrers 

(disk with blades) of radius R=8.75cm spaced a distance H=320mm apart (see figure1 for 

specific sizes). Two DC servomotors regulated by servo amplifier (from Parvex) 

independently drive each stirrer. The motors are configured to keep the disks rotating at 

constant angular velocity Ω, independently of the torque exerted by the turbulence on the 

disks. This is done by using a tachymetry feedback loop, a regulation system that adapts the 

torque delivered by the motors to maintain the imposed angular velocity. The time response 

of the control loop is 0.05s, implying a high-frequency cut-off of 20 Hz (see [14] for further 

details). For lower frequencies, the image of the electric current measured as a voltage output 

of the regulation gives an instantaneous measurement of the torque. The electric current is 

directly proportional to the torque following the Laplace law. 1 volt of torque signal output 

corresponds to 0.52 N.m. In the following the torques are presented in arbitrary units for 

which 1 U.A. of torque = 0.52 N.m, and the frequencies of rotation are in Hz. The 

instantaneous torque delivered by each DC servomotor, )(tM
BΓ  and )(tM

TΓ are analyzed with a 

data acquisition board and LABVIEW software.  

For the present experiments the working fluid is always water and only the angular 

velocities on both disks are varied. The Reynolds numbers reaches at maximum, a magnitude 

of : ≤
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2.2 Instantaneous turbulent torque measurements 

The drag torque  due to the fluid flow on the disk i (i=B or T) rotating at the 

angular velocity  is computed by subtracting to the motor's torqueΓ , the torque due to 

the torques of mechanical friction losses  which were measured independently in the 

empty cell (full of air). We have: 

)(tiΓ

iΩ )(tM
i

S
iΓ

)()()( i
S

i
M

ii tt ΩΓ−Γ=Γ , 

  

2.3 Flow visualization 

Visualization is realized by seeding the water with particles (PVC powder). Their 

averaged diameter is 150 microns and their density d=1.35. Since their density is larger than 

that of water the particles are also used as indicators of the pressure field in the cell. The 

crossed flow (corresponding to the figure 1 view) is video taped in a light sheet produced by a 

4 Watt Argon laser. The shutter of the camera is set to 1/6s and the image rate is 1/50s (each 

frame results from an integration of the flow during a 1/6s time duration sliding window). The 

particles appear white on a black background, they mainly follow the velocity field escaping 

the large coherent low-pressure region because of their higher density than water.  

 

3. Preliminary 

3.1 Preliminary: momentum budget equation 

The total flow of volume V is enclosed by a fixed cylinder of surface ΣW and two 

rotating disks of surface ΣB and ΣT (see figure 1). Let Σ = ΣW +ΣB +ΣT denote the total surface. 
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The budget equation for the momentum taken from the symmetry axis (∆) (see figure 1) 

expressed in cylindrical coordinates system reads : 

dSnrdgrdSnuuurdur
t VSV ∫∫∫∫∫∫∫∫∫∫ ΣΣ

⋅∧+∧+⋅−∧−=∧
∂
∂ )()()( rrrrrrrrrrr στρρτρ , eq. 1 

where  is the unit vector, normal to the surface S and pointing outward the fluid volume, unr r  

the local velocity of the flow, the local velocity of the solid wall, ρ  the fluid density, Sur gr  

the gravity and σ  the total stress tensor.  The left-hand-side is the rate of change in the total 

kinetic momentum. The first term of the right hand side is the flux of kinetic momentum 

through the total surface which is zero since the surfaces are non-porous implying 0
rrr

=− Suu .  

The second contribution is the external volume force momentum, only due to gravity in our 

case, which is zero since the gravity is paralell to the axis (∆). The third contribution is the 

momentum of any surface forces applied on the surface Σ. Since the total surface basically 

decomposed itself into three surfaces (see figure 1) : this last term involves three 

contributions: 

wTBdSnr Γ+Γ+Γ=⋅∧∫∫ Σ
)( rr σ , eq. 2 

BΓ  is the torque exerted on the bottom disk, TΓ  the torque exerted on the top disk and is the 

torque exerted in the inner wall of the fixed cylinder. The budget equation for the kinetic 

momentum thus becomes : 

wΓ

wTB
V

durt Γ+Γ+Γ=∧∂
∂ ∫∫∫ τρ rr   eq. 3 

By taking the time average of equation eq.3, the left-hand-side term becomes zero for 

stationary turbulence which leads to the simple relationship : 

0=Γ+Γ+Γ wTB  eq. 4 
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The top and bottom time-averaged torques are strongly correlated depending on the torque 

exerted on the inner wall of the cylinder. 

 

3.2 Symmetries 

There are two symmetries of interest in this study. The first is in respect to the rotation 

direction (that we will refer as the rotation direction  symmetry) and the second to the top and 

bottom exchange (that we will refer as the inversion symmetry). 

The rotation direction symmetry is expressed as : 

);();( 00 ffffffff TBBTBB −=−=Γ−===Γ , 

             );();( 00 ffffffff TBTTBT −=−=Γ−===Γ      eq. 5 

 

and the inversion symmetry is expressed as : 

);();( 00 ffffffff TBTTBB ==Γ===Γ ,  eq. 6 

 

 

4. Results 

4.1 Turbulent torques over the disks vs.  the rotation frequency ratio. 

 A typical experiment consists in a series of measurements that we call a run (see table 

1). For a run, we set the rotation frequency of one of the disks to f0 and vary the other one 

with a rotation frequency f. When a stationary regime of differencial rotation is reached, we 

measure the time averaged torque of the bottom disk BΓ , and the top disk TΓ . The typical 

fluctuations of the torques are measured as the root mean square torques of both forcing 

devices, we denote them by TΓδ  for the top disk and BΓδ  for the bottom disk: 
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22
TTT Γ−Γ=Γδ and 22

BBB Γ−Γ=Γδ  

The time duration on which the averaging are performed is long enough (typically 1 to 2 

minutes depending on the rotation frequencies) to insure a good statistical convergence of the 

torque fluctuations. The measurements are repeated for different values (about 110 values) of 

f  in the range -2f0 and +2f0. We performed three experimental runs (see Table 1); run #1 and 

run #2 have an identical fixed rotation frequency f0, but it is imposed by the bottom disk in 

run #1 while it is imposed by the top disk in run #2. In run #3, like in run #1, the fixed 

rotation frequency is imposed by the bottom disks but with a smaller magnitude. The results 

are displayed versus the rotation ratios either defined as: 
0f
fS =  or 

f
f

S 0/ =1 , where f0 

always refers to the fixed frequency and  f  to the variable frequency of the run. Table 1 lists 

the variations of both quantities for the three experimental runs. 

 

In figure 2(a) and (b), we reported respectively the mean and the fluctuating torques of 

the top and bottom forcing devices as the function of
0f
fS = . The torques are divided by the 

square of the constant frequency rotation,  f0 that defines a "dimensionless torque" with 

respect to the only variable quantities of the experiments, say the frequency rotations. 

However it could be useful for comparison with other works to introduce the dimensionless κ 

torque defined as . The conversion from our arbitrary "dimensionless torque" 

presented in our figures (2, 3, 4) and κ is : κ=2.81* 1 A.U. of  Γ/f 

52 RΩ=Γ κρ

2. 

The inversion symmetry (eq. 6) of the apparatus is very well checked in figure 2(a) for 

the mean torque of both disks where 2
BB fΓ  [Resp. 2

TT fΓ ] measured in Run#1 is equal to 

2
BT fΓ   [Resp. 2

TB fΓ ] measured in Run#2. Moreover, the measurements of Run#3 

Cadot & Le Maître, 8 



performed at a lower fixed rotation frequency collapse on the data performed at higher fixed 

rotation frequency f0 (Run#1 and #2). Hence the result suggests that the "non-dimensional" 

torques as defined above only depend on the rotation frequency ratio. 

In the case of the torques fluctuation shown in figure 2(b), the measurements are 

slightly more scattered, but the symmetry is also globally checked satisfactorily when 

comparing run #1 and #2. It can be concluded that both motors are then very similar and the 

experimental set-up provides quite accurate measurements of the instantaneous torques. Data 

of run #3 confirm the measurements performed at larger fixed rotation frequency (Run#1 and 

#2) only for the measured at bottom disk (whose rotation frequency is fixed to f0=4.5Hz). 

Actually, for the top disk, the fluctuations contains a sinusoidal signal having the rotation 

frequency. The origin of this spurious signal is not hydrodynamics but comes from a small 

defect of the DC motor. In run#3, where the rotational frequency of the disk is low, this signal 

dominates the fluctuations around S=-0.5 and S=1. Hence, except this experimental defect, 

measurements provide that the torque fluctuations when non-dimensionalized by the square of 

the rotation frequency seems to depend only on the rotation frequency ratio.  

This similitude behavior allows for a simpler representation of the data. Actually, the 

scaling law as the square of the rotation frequency together with the inversion symmetry 

imply that the measurements of both torques for 1≥S  are the same measurements that those 

obtained  for 1≤S  whatever the rotation frequencies (or the Reynolds number of the flow)  

This is reasonably checked on the next figure 3 where plotted are the non-dimensional 

torques, 2
B

B
f
Γ'B =Γ and 2'

B

TT f
Γ=Γ  versus  (for S 1≤S ) measured in run#1 and their symmetric 

counterpart (in respect to eq.5 and eq.6), 2)(
T

B
fSsign Γ  and 2)(

T

T
fSsign Γ  versus 1/S  (for 1≥S ). 
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We can see on the figure 3(a) that the mean torques collapse satisfactorily. The same behavior 

is also observed for the torque fluctuations in figure 3(b). 

 

4.2 Torque exerted on the inner wall cell.   

The time averaged torque exerted on the inner wall of the cylindrical cell is computed 

from equation eq.4. The continuous lines in figure 4 shows the non-dimensional wall torque 

defined as 2
BW fΓ  for run#1 and run #3 versus S∈[-1,1]. The wall torque is zero for S=-1 as 

expected from the experiment symmetries. The measurements for S ≤ -1 and S ≥ 1 correspond  

to the crosses and are plotted in the range S (or 1/S) ∈[-1,1] using the symmetries (eq.5 and 

eq.6). Two distinct scaling regims can be distinguished for the ranges -1 < S(1/S) < -0.67 and 

-0.67 < S(1/S)  < 1. In the range -1 < S(1/S) < -0.67, the curves collapse satisfactorily showing 

that in a range around S=-1, approximately : -1.33 < S < -0.67, the wall torque does not 

depend on viscosity. On the contrary, in the range -0.67 < S(1/S) < 1 , the curves clearly do 

not collapse, indicating that the averaged wall torque does not scale with the rotational 

frequencies rotation only but also on the Reynolds number. 

 

4.3 Visualization of the flow as a function of S. 

We have so far quantified the torque's magnitudes, symetries and scaling, we now turn 

to the complex structure of the torques evolution with the frequency ratio. Our idea is to 

understand the torque behaviour with the help of the global time averaged flow visualization. 

We restrict the study between -1<S<+1 only (this restriction is justified because of the 

symmetries and the scaling laws properties displayed in figure 3). In figures 5 and 6 the 

frequency of the bottom disk is set to 4.5Hz.  
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We first focus on the counter-rotating regime. Figure 5 shows the cross-flow for 4 

negative values of S. The first picture in figure 5 shows the exact counter-rotating regime 

S=-1. The time averaged cross-flow consists in a cell point centered in the middle of the cell. 

Above and below this stagnation point we can observe four cell structures that are actually the 

cross section of two re-circulation tores. In the literature [1-5] on rotating disks, this flow 

topology is referred as a two cells flow structure. They are the result of the radial ejection 

with a central suction on both disks. The separation of both tores is marked by a strong radial 

jet coming from the cylinder wall to the centre. For S=-1 the separation is exactly in the 

middle plan of the cylinder. On the next picture, S=-0.53, the separation moves above 

(actually, closer to the lowest rotating disk) and only one re-circulation tore is now observable 

near the bottom disk. The flow at S=-0.2 is very similar to that of S=-0.53. At S=0, we observe 

a strong coherent jet orientated from the top disk to the bottom disk. A very surprising feature 

is the presence of a very strong depression (appearing black) at the centre of the top disk (that 

do not rotate). .  

For the co-rotating regime, the flow also seems to encompass transitions. At S=0.2, 

the strong depression on the top disk disappears, and reappears again for S=0.35. In this case, 

the vertical jet becomes much weaker. For larger values of S, the vertical jet is even not 

observable anymore. From S=0.65 to S=1 we observe the increase of a large depression along 

the vertical symmetry axe of the cylinder. For the values of S<1, the depression is 

concentrated only around the cylinder axe, while it takes the entire volume of the cylinder at 

S=+1. At S=+1, all the particles are localized in the mid plan and near the wall, where the 

flow rotation is the weakest (due to the dissipation occuring at the cylinder wall). The small 

white regions appearing in the middle are air bubbles introduced in the flow trough a leak in 

the watertight joints.  
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5. Discussion 

5.1 Similitude laws 

The torques on both disks are found to depends mostly on the rotation frequencies 

(figure 3). We can thus model the mean torques as : 

)();( SHffff TTBTBB =Γ and )();( SHffff BTBTBT =Γ , 

where (due to the inversion symmetry) is a non-dimensional function 

which depends only on the geometry of the system. At firs       t order, this system does not 

depend on the viscosity (in the range of our measurements) whatever the frequency ratio. This 

observation was already reported [13] but only for S=-1 who ascribed this effect to an inertial 

stirring of the turbulence. The system actually seems to be inertial even for larger range of 

frequency ratios. However, if we look closer, some significant effect due to the viscosity is 

found on the total torque exerted on the inner wall of the cylinder (figure 4). In this case, a 

large amount of the total energy is dissipated on the smooth wall. For instance for S=1, the 

bulk rotates as a solid body and most of the strain, hence the dissipation is only localized on 

the inner smooth wall. The friction law is here similar to what is obtained in smooth plates, 

which depends on the viscosity. On the other hand it is very interesting to find that for the 

counter-rotating regime around S=-1 (approximately -1.33 ≤ S ≤ -0.67), dissipation occurring 

at the wall does not depend on viscosity. This result seems in contradiction with the friction 

law on smooth wall in case of turbulent boundary layer. Actually, the turbulent friction 

exerted on smooth flat plates [18] depends on viscosity. This dependence is related to the 

decrease of the turbulent boundary layer thickness as the Reynolds number increases. We can 

then  think that the observation of a constant friction is due to a constant turbulent boundary 

layer thickness on the inner wall of the cylinder. If this is the case, the effect is probably 

)/1()( SHSH BT =
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related to the strong elongationnal stress at the wall between the cells. At the moment we do 

not have more evidence for such effect that should deserve for further comprehension. 

 

5.2 The transition at S=-0.69 

 One of the most striking transition that can be observable on the torque measurements 

occurs at S=-0.69  (or S= -1.45) in figure 2 and 3. This transition can be related in the flow to 

the transition from the one cell flow structure to a two cells flow structure. Such transition has 

already been reported in cases of counter-rotating smooth disks [3,4]. A two cells structure 

corresponds to a situation where the centre part of both disks sucks the flow. The two cells are 

clearly observable in figure 5(a) for S=-1 and correspond to the sections of two re-circulation 

tores. A one cell structure corresponds to a situation where the centre part of the disk having 

the larger frequency rotation sucks the flow, while the centre part of the other disk having a 

lower rotation frequency ejects the flow. Such situation is observable in figure 5(d) for S=0 

where only one recirculation torus is present. In previous works concerning smooth disks, the 

transition is found to depend strongly on the Eckman number but to be independent of the 

aspect ratio of the experiment [3,4]. The Ekman number compares the thickness of the 

boundary layer on the disk to the distance between both disks. It is defined as : ( )2HEk δ= . In 

smooth disks experiment the velocity gradient are located in the boundary layer (see figure 7) 

on the disk and decreases (as the Ekman number) when the Reynolds number increases. For 

an inertially driven flow (disks with blades), the situation is very different since the mean 

flow does not present any velocity gradients in the vicinity of the disks but are distributed in 

the bulk (see figure 7). There is in this case an effective [19] boundary layer in the bulk that 

does not depend on the Reynolds number which should correspond to a very large Ekman 

number. Dijkstra & Heijst [3] computed analytically the critical value for the transition Sc in 
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the case and found S+∞→Ek c=-2/3. The value is very close to ours (-0.69 compared to 

-0.67), it then confirms the similitude between the smooth disks flow with a large viscosity 

(large Ek) and the mean flow of the inertially driven turbulent flow. The reason for this 

similitude is the large efficiency in both cases of the momentum transport in the flow. We can 

notice that the critical value obtained in our experiment is slightly larger. This effect could be 

related to the detail of the azimuthal velocity profile that is linear in the flow produced by 

smooth disks at infinite Ekman number and having a tangent hyperbolic shape in our flow 

(see figure 7). The experiment of Ravelet [16] confirms the role of the mean flow detail since 

a transition at S=-0.78 is found with their geometry. 

 

5.3 The torque fluctuations versus S. 

In figure 3(b), the torque fluctuations present drastic changes versus the angular 

velocity ratio S. There are two very distinct maxima at S=-1 and S=0.06. An third local 

maximum is also observable  at S=0.23. For the exact counter rotating regime, S=-1; the mean  

flow correspond to a stagnation point in the middle of the cell (see figure 5(a)). This type of 

flow is known to be very unstable [20] which then could explain the large magnitude of the 

fluctuations. For larger velocity ratio, the torque fluctuations have a minima for S=-0.60 

which is close to the transition between the one and the two cells flow structures (see 

discussion 5.2). The torque fluctuations then increase continuously from S=-0.6 to S=+0.06 

where the magnitudes of the fluctuations are comparable to those at S=-1. The flow 

instationarity here is probably related to the vortex breakdown dynamics that appear in the 

rotor stator configuration [21]. 

For larger values of S, the fluctuations decreases mostly until the co-rotating regime 

S=+1. However, a transition is observable around S=0.2.  This transition could be related to 
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the appearance of a second recirculation cell similarly to the counter-rotating regime (read 

discussion 5.2). Actually it is known [22] that if the cylinder is fixed, both disk should 

produce a suction leading to a two cell flow structure for S=+1. The flow should then undergo 

a transition between S=0 and S=+1. On our visualization, it is difficult to check this idea. The 

picture S=0.2 in figure 6 gives some indications. One can observe a strong suction due to the 

top disk that rotates the fastest, but also a small torus section on the bottom disk, showing that 

the bottom disk sucks the flow as well. This figure then suggests that the flow consist in a two 

cells structure at S=0.2. 

 

6. Conclusion 

The measurements of the torques driving the turbulent flow for this geometry provide 

results about the similtude laws. The flow is found to be fully inertial for any contribution of 

the torques (disks and smooth inner cylinder wall) for the rotation angular velocity ratio in the 

range -1.33<S<-0.67 . This range correspond to the existence of two cells in the bulk. We then 

believe the strong elongationnal stress at the wall to be responsible for this inertial behavior. 

For this range the similitude laws for the torques are then simple; watever the Reynolds 

number explored, the non dimensional torque (based on the inertial stirring) only depend on S. 

For a given ratio S, the non dimensional torques of the bottom and the top stirrer respectively 

are identically equal to those obtain for the ratio 1/S of the top and the bottom stirrer 

respectively. For rotational frequency ratios outside from this range, we find the the energy 

injection to depend on the viscosity, mainly due the torque exerted on the inner smooth wall 

that behave now as a conventional turbulent friction law. However, the similitude laws 

discussed above are reasonably followed and a good representation of torques can be given in 

the range S =[-1;+1]. Global transitions are observed versus S, shown of by abrupt changes in 
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both the mean torques and the torques fluctuations. A transition occuring at S=-0.69 is clearly 

identifyed corresponding to the well known one to two cells transition. A similar transition is 

also detected in the co-rotating regime (S >1). 
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 fB fT S= f/f0 1/S 

Run #1 f0 = 5.8 Hz -10.6 Hz< f <11.5 Hz [-1.83 ; 1.98] [...; -0.54] ∪ [0.50 ;...] 

Run #2 -10.8 Hz< f <10.6 Hz f0 = 5.8 Hz [-1.86 ; 1.83] [...; -0.54] ∪ [0.55 ;...] 

Run #3 f0 = 4.5 Hz -10.2 Hz< f <10.9 Hz [-2.26 ; 2.41] [...; -0.44] ∪ [0.41 ;...] 

TABLE 1 : The three experimental runs #1, #2 and #3 with the corresponding ranges of the

rotation frequencies for both top and bottom disks. The parameter S is the frequency ratio. 
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FIGURE CAPTIONS 

 

Fig.1 : Cross section (a) of the cylindrical experimental cell. The total volume of fluid is 

comprised in a surface ∑  that decomposed itself into three parts. A fixed part (dashed line) of 

surface  corresponding to the wall's cell and two rotating  parts corresponding to ∑ , the 

surface of the top disk and ∑ , the surface of the bottom disk. Detail (a) of one disk with the 

arrangement of the six blades. 

W∑ T

B

 

Fig.2 : Torque measurements versus the rotation frequency ratio S. The non dimensionnal 

time averaged torques (a) <ΓT>/fB
2 and  <ΓB>/fB

2  are displayed for two different fixed 

rotation frequency of  the bottom disk (run #1 and run #3, see table 1). In (a), <ΓB>/fT
2 and  

<ΓT>/fT
2 measurerd in run #2 are respectively the symetric (see eq. 6) of  <ΓT>/fB

2 and  

<ΓB>/fB
2 measured in run#1.  The non dimensional torque fluctuations (b), δΓT /fB

2 and  δΓB 

/fB
2 are displayed for two different fixed rotation frequency of  the bottom disk (run #1 and 

run #3, see table 1). In (b), δΓB/fT
2 and  δΓT /fT

2 measured in run #2 are respectively the 

symetric (see eq. 6) of δΓT /fB
2 and  δΓB /fB

2  measured in run#1. 

 

Fig.3 : Similitude laws checking for the non dimensional averaged torques (a) and the non 

dimensional fluctuation torques (b) for run #1 versus S∈[-1,1]. The measurements shown of 

by crosses are deduced from the torque measurements for S ≤ -1 and S ≥ 1. For this 

representation the two symetries of eq. 5 and  eq.6 are needed.  

 

Cadot & Le Maître, FIGURE CAPTIONS 



Fig.4 : Non dimensional average torque over the inner smooth wall versus S∈[-1,1]  for run 

#1 and #3. The measurements shown of by crosses are deduced from the for S ≤ -1 and S ≥ 1. 

For this representation the two symetries of eq. 5 and  eq.6 are needed. 

Fig.5 : Flow visualization of the counter-rotating regime, S≤0. The bottom disk's rotation 

frequency is set to 4.5 Hz. 

 

Fig.6 : Flow visualization of the co-rotating regime S>0. The bottom disk's rotation frequency 

is set to 4.5 Hz. 

 

Fig.7 : Laser doppler velocimetry measurements of the orthoradial velocity profile 

along a vertical axis located at R)/2( Hzvθ m = 0.7 R. z=0 defines the middle plan of the 

cylindrical cell and H is the distance separating both disks. The error bars correspond the rms 

values of the velocity. When the disks are equiped with blade, the velocity profile corresponds 

very schematicaly to the dashed thin line, that joins the boundary condition at the disks 

without any velocity gradient. In contrast, with smooth disks, the velocity profile should join 

the boundary condition at the disks through a thin viscous boundary layer as depicted by the 

dashed thick line.  
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