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Abstract

This work addresses the estimation of the parameters of an earthquake model by the consequent tsunami,
with an application to the Chile 2010 event. We are particularly interested in the Bayesian inference of the
location, the orientation and the slip of an Okada based model of the earthquake ocean floor displacement.
The tsunami numerical model is based on the GeoClaw software while the observational data is provided
by a single DART R© buoy. We propose in this paper a methodology based on polynomial chaos expansion
to construct a surrogate model of the wave height at the buoy location. A correlated noise model is first
proposed in order to represent the discrepancy between the computational model and the data. This step is
necessary, as a classical independent Gaussian noise is shown to be unsuitable for modeling the error, and
to prevent convergence of the Markov-Chain Monte-Carlo sampler. Second, the polynomial chaos model
is subsequently improved to handle the variability of the arrival time of the wave, using a preconditioned
non-intrusive spectral method. Finally, the construction of a reduced model dedicated to Bayesian inference
is proposed. Numerical results are presented and discussed.

Keywords: uncertainty quantification, Bayesian inference, polynomial chaos expansion, noise model,
low-rank representation, shallow water equation, tsunami, earthquake inversion

1. Introduction

Subduction zone tsunamis are one of the most devastating natural hazards on the planet, causing
widespread destruction of life and property. Scientists have long attempted to mitigate the risk of another
devastating tsunami, but unfortunately these efforts are often hampered by the large amount of uncertainty
involved in predicting such events. These uncertainties include the lack of knowledge in bathymetry, pa-
rameterizations in the friction model, and perhaps most notably, the earthquake that triggers these large
tsunamis. This paper is dedicated to addressing the last and most substantial source of input uncertainty,
that of the earthquake parameterization itself.

Uncertainty quantification regarding tsunamis has not gone unnoticed in the literature. Studies include
work done with existing earthquake parameterizations attempting to ascertain the best fit to observable data
with only a temporal shift as a free parameter [20], while others looked at landslide generated tsunamis using
a similar approach [28]. Bayesian inversion of the slip distribution was also studied on synthetic data [10]. In
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the broader oceanic context there has been work to examine tidal components employing adjoint or Kalman
filtering approaches [9, 19, 32, 15, 22].

The present work aims at extending previous effort in [29, 30] to assess uncertainty quantification and
source inference in a more complex setting, and in a situation where measurements are scarce. The tsunami
that occurred off the coast of Chile on February 27, 2010, was selected for this purpose. The complexity in
this application arises from the fact that the epicenter of the earthquake that triggered the tsunami waves
was located close to the coastline, and that wave height measurements were provided by a single DART R©

buoy only. With uncertainty in source location, this resulted in large variability in the wave arrival time,
which was compounded by reflected waves from the boundaries.

We initially attempted to implement the methodology in [30] to construct a representation of the wave
height response at the buoy location, and to exploit this representation to infer the earthquake source
parameters. However, as further described later, a straightforward implementation of the approach in [30]
was not satisfactory, for both the forward and inverse problems. Consequently, it became necessary to
introduce alternative methodologies. These include the development of an elaborate likelihood model that
incorporates a correlated noise term and the construction of preconditioned functional representations of the
transient wave-height dependence on the source parameters. The development of the surrogate and noise
models, and the assessment of their performance through applications to the 2010 Chile earthquake, are two
of the main contributions of the present work. A third contribution concerns the evaluation of the potential
of using a reduced surrogate model for the purpose of signal representation and parameter inference.

This paper is organized as follows. Section 2 describes the computational model, available measurements,
and prior information. In Section 3, we provide a brief outline of the Bayesian framework used for the inverse
problem, of the polynomial chaos (PC) expansion approach used for representing the model output, and
of the non-intrusive projection approach adopted for the purpose of determining the expansion coefficients.
Section 4 then outlines the design of the noise model used to describe the discrepancy between measured
and predicted wave height. Section 5 discusses results of the simulations, analyzes the behavior of surrogate
models in representing model outputs, and assesses the performance of the surrogate and likelihood models
in the Bayesian inference methodology. Major conclusions are summarized in Section 6.

2. Test problem: Chile 2010 tsunami

As a case study we will consider the tsunami that occurred off the coast of Chile on February 27, 2010,
modeled by the GeoClaw package [5]. A description of the numerical model is given in this section along
with a description of the test problem, available data, and parameters of interest.

2.1. Numerical model
The GeoClaw package solves the two-dimensional shallow water equations

ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 + 1

2gh
2
)
x

+ (huv)y =

− ghbx − gc2h−5/3 ‖u‖u,

(hv)t + (huv)x +
(
hv2 + 1

2gh
2
)
y

=

− ghby − gc2h−5/3 ‖u‖ v,

where h is the height of the water column, u = (u, v) is the depth-averaged velocity with components in the
longitude and latitude directions, b is the bathymetry, represented with a 10-minute ETOPO2 topography,
and n = 0.025 is the Manning’s coefficient. The initial condition is taken to be at sea-level defined via the
datum based on the zero-level of the bathymetric source (in this case ETOPO2). The boundaries of the flow
are handled in two ways; (1) where the boundary is dry- land a numerical solver is employed that allows
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for flooding of the dry-land as described in [12] and therefore allowed to move and (2) where a boundary is
open ocean the boundary conditions allow for waves to exit the domain via a zero-extrapolation numerical
boundary condition.

In the present study, we seek to infer the four parameters describing the geometry of the fault, namely
the latitude and longitude of the epicenter, the strike angle, and the slip along the fault. The sea-floor
deformation is prescribed and computed using the Okada model [25] which uses a Green’s function approach
to represent the static response of an elastic half- space to a single plane fault.

Concerning the prior knowledge on the four parameters of interest, we rely on the epicenter proposed in
a preliminary U.S. Geological Survey (USGS) fault model of the earthquake 1. Based on the information
in [3], we define a large rectangular domain bordering the coast of Chile, from Concepción city (36.6 S,
73.0 W) to San Antonio city (33.25 S, 71.75 W), at a distance between 0 and 1.5 in latitude-longitude
degrees. Figure 1 depicts the considered rectangular domain and shows the two nominal locations proposed
by the USGS [3] and used in [5] (labeled GeoClaw). For convenience, the rectangular domain is linearly
mapped to the reference square (−1, 1)2, and the location is expressed in term of two canonical coordinates
ξ1, ξ2. A uniform distribution of the epicenter location (resp. canonical coordinates) is finally assumed over
the rectangular (resp. reference square) domain. Similarly, the strike and the slip parameters are assumed to
follow the uniform distributions U(10◦, 30◦) and U(5 m, 20 m) respectively. Again, the strike and slip values
are parameterized by canonical random variables ξ3 and ξ4, both uniformly distributed on (−1, 1). These
four random variables are assumed to be independent, such that the vector of canonical parameter ξ has a
uniform prior over a four-dimensional hypercube.

76°W 73°W 70°W
38°S

35°S

32°S

Conceptión

San Antonio
Santiago

GeoClaw
USGS
Prior

Figure 1: Support of the prior distribution of the location of the epicenter, USGS and GeoClaw nominal value.

2.2. Available observations
For the purpose of inferring the model parameters we rely on the comparison of the sea surface height

anomaly predicted by the model and measured at a buoy. The buoy is one of the 39 DART R© stations of
the national oceanic and atmospheric administration (NOAA) network for early warning detections. It is
composed of a bottom pressure recorder at the seafloor coupled with a surface buoy which transmits the
recorded data to a satellite [23]. Specifically, the data used in the present work are detided measured sea
surface anomalies. The buoy in question is station 32412 located southwest of Lima, at 17.980 S, 86.330
W, and shown in Figure 2. The data recorded by the DART R© station 32412 are plotted in Figure 3. It is

1See https://earthquake.usgs.gov/earthquakes/eventpage/official20100227063411530_30
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seen that the buoy location is a few thousand kilometers away from the epicenter prior domain. We can
notice some oscillations at the beginning of the record that are due to the earthquake waves. Since the
GeoClaw model does not take into account seismic waves propagation, the data corresponding to the first
two recorded hours will be discarded from the analysis. The measured anomaly after 5.5 hours will be also
ignored due to the loss the veracity of model equations. The observations used for the inference therefore
consist of a set of n sea surface anomalies yi=1,n at times 2 ≤ ti=1,n ≤ 5.5 hours after the event.

90°W 80°W 70°W
40°S

30°S

20°S

10°S
DART gauge
Prior

Figure 2: DARTR© gauge 32412 and support of the prior distribution of the location of the epicenter and comparison with the
default GeoClaw model.

We notice that the evaluation of the model predictions of the sea surface anomaly at the buoy location,
given the value of the canonical parameter ξ, requires the solution of an elaborate model with significant
computational cost. The wall clock time associated with the computation of the solution GeoClaw model
is 26.7 s on a single thread. In the present study, all computations are performed on a processor with 24
cores, each core having a 2.50 GHz base frequency. In the following section we discuss the non-intrusive
construction of an efficient surrogate model that can be used to model predictions, and subsequently used
to perform the inference task.

3. Background

In this section we introduce the notation and briefly cast the Bayesian inference problem and the Poly-
nomial Chaos expansion method to efficiently solve it.

3.1. Bayesian inference
Let (Ω,B,P) be an abstract probability space with Ω a sample space, B a σ-algebra, and P a probability

measure. We are interested in the inference of a random vector ξ : Ω → Ξ ⊂ Rp, with p < ∞, using a
forward model M(ξ) = `(h(ξ)), composed of the solution of (an eventually discretized) partial differential

4



0 1 2 3 4 5 6 7 8 9

−0.2

0

0.2

0.4

Time after the earthquake(h)

Se
a
su
rf
ac
e
an

om
al
y
(m

)
Data
Nominal parameter

Figure 3: Sea surface anomaly recorded by the DARTR© station 32412. Also shown is the GeoClaw output using the nominal
parameter.

equation h(ξ), and a quantity of interest `, which predicts an observation. In order to perform the inference,
an additive noise ε is added to the model prediction, yielding finally

Y = M(ξ) + ε, (1)

where Y is a Rn-valued random vector representing the predicted observations.
The parameter ξ and the additive noise ε are random vectors following prior distributions with probability

density functions fξ and fε respectively. These distributions represent the prior belief regarding ξ and ε.
When an observation y of Y is available, the posterior probability density fξ(ξ|Y = y) of ξ is given by Bayes’
theorem:

fξ(ξ|Y = y) = fY (y|ξ)
fY (y) fξ(ξ).

We shall assume that the noise follows a multivariate normal distribution, i.e. ε ∼ N (ε̄(θ), Cε(θ)). Here,
we denote by θ the vector of hyperparameters defining the noise bias ε̄(θ) and the covariance matrix Cε(θ).
In fact, we will also infer the value of θ with Bayes’ theorem, leading to the posterior probability density
function fξ,θ(ξ, θ|Y = y) defined by

fξ,θ(ξ, θ|Y = y) = fY (y|ξ, θ)
fY (y) fξ(ξ)fθ(θ). (2)

It is supposed that the parameter and hyperparameter vectors are a priori independent. The likelihood of
the observation, fY (y|ξ, θ), is then directly deduced from the distribution of the noise

fY (y|ξ, θ) = (2π)−n2 |Cε(θ)|−
1
2

exp
(
−1

2 ‖y −M(ξ)− ε̄(θ)‖2Cε(θ)−1

)
, (3)

hence the posterior distribution fξ,θ(ξ, θ|Y = y) is known up to a normalizing constant, the marginal
likelihood fY (y).

In order to sample the ξ and θ according to the posterior distribution, we shall use the adaptive Metropolis
algorithm [13]. It is a Markov Chain Monte Carlo (MCMC) method which enables sampling from any
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arbitrary distribution provided that its density is known up to a constant. The main drawback of this
sampling strategy is that it requires a large number of evaluations of the forward model M(ξ). As a
consequence, if one evaluation of the forward model requires the solution of a transient nonlinear PDE in
multiple dimensions, the computational cost of the sampling strategy becomes prohibitive. This problem
is circumvented by computing an approximation of the forward model with a truncated polynomial chaos
expansion as proposed initially in [21].

3.2. Polynomial chaos acceleration of the inference
Let (Ξ,BΞ, µξ) be a probability space where BΞ is the Borel σ-algebra, and µξ is the push-forward

measure of P by ξ. We first assume that the quantity of interest mapping M has a finite second moment,
meaning that

M ∈ L2
µξ

(Ξ,Rn),

where L2
µξ

(Ξ,Rn) =
{
v : Ξ→ Rn; E

(
‖v‖2

)
<∞

}
, E is the mathematical expectation, and ‖ · ‖ is the

Euclidean norm. The space L2
µξ

(Ξ,Rn) is a Hilbert space when equipped with the inner product defined
by 〈u, v〉L2 = E(uT v) and the associated norm. Let (ψα)α∈I be a Hilbert basis of L2

µξ
(Ξ,R) where I is a

countably infinite set, an expansion of M is given by

M(ξ) =
∑
α∈I

Mαψα(ξ), Mα ∈ Rn,

where the sum converges in the L2 sense [33, 8].
In the univariate case, a pertinent choice for the Hilbertian basis (ψα)α∈I is the family of orthonormal

polynomials with respect to the probability measure µξ. This strategy corresponds to the generalized poly-
nomial chaos expansion (PCE) of M which exhibits an exponential convergence rate when M is sufficiently
smooth [34]. For the multivariate case, the definition of the basis depends on the independence of the
variables (ξi)pi=1. In this work, these are assumed to be independent. The basis is thus the tensorization of
univariate polynomials, exploiting the tensor product structure of the space L2

µξ
(Ξ,R) [14].

An approximation of M is then obtained by truncating the series; consider a finite subset of indices
Im ⊂ I , the approximation is defined by

M(ξ) ≈Mm(ξ) =
∑
α∈Im

Mαψα(ξ).

Once the vectors (Mα)α∈Im are computed, the forward model M(ξ) is approximated by Mm(ξ), called
the surrogate model in the following, whose evaluation is inexpensive owing to the product form of the
polynomials ψα. It enables efficient sampling of the posterior using MCMC methods.

3.3. Non-intrusive spectral projection
The construction of the surrogate model of M requires the calculation of its PC modes Mα. To this

purpose, we will rely on a non-intrusive method, meaning that the Mα are determined for evaluations of the
forward model M(ξ) at selected values of ξ. Such an approach uses a numerical solver for h(ξ) as a black
box and no modifications of the original code are required. Several non-intrusive methods are available,
including stochastic collocation methods [4] and regression techniques [6]. We choose here to use the non-
intrusive spectral projection (NISP) method [27] which consists in writing the L2 optimality condition for
the approximation of M by the surrogate model. Formally, thanks to the L2 orthogonality of the basis, the
solution of the minimization problem

min
(Mα)α∈Im

E

(
‖M −

∑
α∈Im

Mαψα‖2
)
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satisfies
Mα = E(Mψα)

E(ψ2
α) , ∀α ∈ Im.

The term E(ψ2
α) has an analytical expression when using classical orthogonal polynomials like Hermite

or Legendre ones [1]. In the NISP method, a quadrature rule is introduced to estimate the correlations
E(Mψα). Denoting (wz)z∈Z and (ξz)z∈Z the weights and points of the quadrature respectively, the vectors
(Mα)α∈Im are estimated by

Mα ≈
1

E(ψ2
α)
∑
z∈Z

wzM(ξz)ψα(ξz), ∀α ∈ Im.

It is seen that the method requires only the evaluation of the forward model at the quadrature points
(M(ξz))z∈Z .

In the following, we will exploit the assumed independence of the variable ξi and the tensorized form
of the polynomial (ψα)α∈I , using fully tensorized Gauss quadrature rules. In particular, the order of the
Gauss quadrature rules are selected such that it prevents internal aliasing, by insuring∑

z∈Z

wzψα(ξz)ψβ(ξz) = δαβE(ψ2
α), ∀α, β ∈ Im.

4. Noise modeling

In this section we illustrate the importance of selecting an appropriate noise model to achieve a correct
estimation of the model parameter vector ξ. Equations (2), for the posterior distribution, and (3), for the
likelihood, shows how the noise model intervenes in the definition of the posterior, in particular through
the selected noise covariance Cε(θ) and bias ε̄(θ). We shall contrast two noise models: a white noise model
and a correlated noise model, in Sections 4.1 and 4.2 respectively. In both cases, we rely on the same
surrogate model of M(ξ). The parameter ξ having a uniform prior, the surrogate model consists in a
PC expansion of fully tensorized Legendre polynomials of a maximum partial degree 9. The expansion
coefficients are computed by the NISP method discussed above, using the full tensorization of the 10 points
Gauss-Legendre quadrature rules (integrating exactly polynomials with degree up to 19).

Regarding the sampling of the posterior distribution, the convergence of the Markov chains needs to be
assessed. Besides the visual inspection of the simulated chains and the computation of their autocorrelation
functions, we use in this work the Gelman-Rubin (GR) diagnostic [11]. This diagnostic will be also used
to analyze the quality of the inference, depending on the noise model. The GR diagnostic requires the
computation of several chains with different starting points. Let (ξq,k)q=Q,k=K

q=1,k=1 be Q chains of K samples.
In the scalar case, ξq,k ∈ R, the GR statistic compares the between-chain variance B and the within-chain
variance W to assess the convergence of the chains. These variances are respectively given by

B = K

Q− 1

Q∑
q=1

(ξq − ξ)2 and W = 1
Q

Q∑
q=1

s2
q,

where

ξq = 1
K

K∑
k=1

ξq,k, ξ = 1
Q

Q∑
q=1

ξq,

and s2
q = 1

K − 1

K∑
k=1

(ξq,k − ξq)2.

An unbiased estimator of the posterior variance is

V = K − 1
K

W + 1
K
B.
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The convergence of the chain is finally assessed by the potential scale reduction R defined by

R =
√
V

W
.

It can be shown that for over dispersed starting points (with respect to the posterior), we have R ≥ 1
and it converges to 1 with the number of samples K, provided that the sampler is robust enough. As a
consequence, the case of R � 1 denotes a situation where the chains have not converged. If the symptom
remains for K → ∞, it means that the sampler is severely challenged and not able to properly visit the
different posterior modes. In the case of random vectors, the GR statistic is computed for each component
ξi.

4.1. White noise
We first analyze an unbiased white noise model in the inference of the parameter. This is the simplest

and certainly mostly widely used noise model. The quantities (εi)ni=1 are independent and identically drawn
from a normal distribution with mean 0 and variance σ2, or more concisely ε ∼ N (0, σ2In), where In is the
n× n identity matrix.

The standard deviation σ is defined through a single hyperparameter θ by

σ = 10θ, where θ ∼ U(−5, 0).

This log10-uniform distribution for σ gives more importance to small values of σ with the property that
P(10a ≤ σ ≤ 10b) = (b− a)/5 for −5 ≤ a ≤ b ≤ 0.

For this white noise model, Q = 5 chains are run with the adaptive Metropolis algorithm. The initial
105 samples are discarded and K = 4× 105 subsequent samples are recorded and used to compute the GR
statistics for the 4 model parameters ξ1 to ξ4. The computed potential scale reductions are found

R = (19.09, 193.4, 55.27, 10.72).

Each component is far greater than 1, by one or two orders of magnitudes, and it can be concluded that the Q
sampled chains are far off the posterior distribution. In fact, the chains are concentrating in different regions
of the parameter domain, indicating that the posterior distribution is multi-modal. This is illustrated in
Figure 4 where the joint density of the parameter pair (ξ1, ξ2) obtained for two chains with different starting
points is demonstrated.

We observe that the length of the chains are large and that considering longer chains (larger K) would
not help reducing the reported R values. Similarly, the MCMC sampler can hardly be blamed for being
responsible for the convergence failure. Instead we claim that it is the poor quality of the noise model that
causes an inference problem with a badly conditioned posterior. This claim is supported by the plots in
Figure 5, where is plotted the discrepancy between the data and the GeoClaw prediction (top plot). This
error is compared to a random sample of the Gaussian white noise as inferred by one of the chains (bottom
plot). It is seen that if the standard deviation of the noise is correctly estimated, globally over the whole time
domain, the noise model is still missing the temporal structures that are present in the actual discrepancy
between the observation and the prediction. In particular we can distinguish two periods in time, before the
arrival of the tsunami (t ≤ 3 h) and after (t > 3 h). Hence the stationary assumption of the Gaussian white
noise does not hold, and the inferred noise does not fit properly any of these two periods of time. A proper
noise model is proposed below to remedy these problems and to ensure proper convergence of the MCMC
sampler.

4.2. Noise design
In order to represent the measurement noise as well as the model error, we design in this section a

suitable Gaussian process capable of accounting for the discrepancies between typical model predictions
and the measurements, as illustrated in Figure 5 for the case of the prediction with nominal parameter
values. As discussed previously, the time domain is separated into two phases, with separation time t ≈ 3 h
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Figure 4: Joint density of the pair (ξ1, ξ2) for two different chains; shown is one fourth of the domain (lower left quadrant).

corresponding to the arrival time of the wave at the measurement buoy. Prior to the arrival of the waves,
the discrepancies are low and can be properly modeled with a Gaussian noise. After the arrival of the waves,
the discrepancy is on the contrary correlated with a significantly higher level. These features suggest a
composite noise model.

To this end, we first arrange the measurement times in increasing order, that is t1 ≤ t2 ≤ . . . ≤ tn,
and denote by i0 the largest integer such that ti0 ≤ 3 h. A white Gaussian noise with a non-zero mean
is first considered over the whole time domain. This first contribution, denoted εW , involves two hyper
parameters: a mean value θ1 representing a measurement bias and a standard deviation σ1. The bias θ1 is
given a uniform prior distribution, while the standard deviation σ1 is given a log10-uniform distribution as
in Section 4.1. The noise contribution at time ti is then given by

εW (ti) ∼ N (θ1, σ
2
1),

where θ1 ∼ U(0, 0.025) and σ1 = 10θ2 , θ2 ∼ U(−5, 0).
For the correlated part, say εC(t), we assume that the model error is a centered Gaussian process. The

process is then fully specified by its covariance. For simplicity, we shall assume the process to have zero
variance for t < 3 h, and to be stationary for t ≥ 3 h with a Matérn 3/2 covariance [26]. Denoting rij the
time lag between two measurement times, rij = |ti − tj |, the process covariance can be thus written as

CM (ti, tj ;σ2, T ) = σ2
2

(
1 +
√

3rij
T

)
exp

(
−
√

3rij
T

)
,

when min(ti, tj) ≥ 3 and CM (ti, tj ;σ2, T ) = 0 otherwise. The covariance has two additional hyperparame-
ters, the standard deviation σ2, for t ≥ 3 h, and a time scale T . The standard deviation is once more given
a log10-uniform prior distribution, while the time scale is given a uniform prior distribution, as follows

σ2 = 10θ3 , θ3 ∼ U(−5, 0) and T = θ4 ∼ U(5 s, 500 s).

Finally, the noise model is written as
ε(t) = εW (t) + εC(t).

The noise model now has a total of 4 hyperparameters θi=1,...,4.
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Figure 5: Error between the data and the GeoClaw prediction using nominal parameters ξ = ξGC (top plot), and a random
sample of the Gaussian white noise model with standard deviation equal to 3.35 × 10−2m (bottom plot).

Using the improved noise model, we compute the GR statistics using Q = 5 chains each with K = 4×105

samples (after a burning period of 105 samples); the potential scale reductions are now equal to

R = (1.00200, 1.00188, 1.00127, 1.00087),

indicating that the MCMC samples are now well converged, in contrast with the previous experiment.
Being confident in the solution of the inference problem, we characterize its solution using the maximum

a posteriori (MAP) values of the parameter ξMAP and the hyperparameter θMAP. These quantities maximize
the posterior probability density function, thus satisfy

ξMAP, θMAP = arg max
ξ,θ

fξ,θ(ξ, θ|Y ).

Note that since the prior distributions are uniform, the MAP estimate is also the maximum likelihood
estimate. The MAP values are computed with the differential evolution algorithm [31], a genetic type
method. We used here the function implemented in the Python SciPy library [16]. The best solution
computed among several runs is

ξMAP ≈ (−7.67× 10−1,−9.41× 10−1, 1.01× 101, 9.43)

and
θMAP ≈ (5.57× 10−3,−2.85,−1.43, 4.35× 10−2). (4)
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The quality of the result can be qualitatively assessed with the marginals shown below in Figures 8, 9 and 10.
Moreover, this MAP estimate is compared to the posterior distribution computed for each element of the
Markov chains used at the beginning of Section 4.2. We deduce in particular that σMAP

1 ≈ 1.40× 10−3 m and
σMAP

2 ≈ 3.71× 10−2 m. These values reflects the large differences in the discrepancy level before and after
the arrival of the tsunami at the buoy. The MAP correlation time is TMAP ≈ 4.35× 10−2 h ≈ 1.57× 102 s.

In Figure 6, the model prediction for the MAP estimate (ξ = ξMAP) and the GeoClaw nominal value
(ξ = ξGC) are compared to the data, taking the inferred bias θMAP

1 into account for the MAP output.
We remark that the MAP differs significantly from the nominal GeoClaw prediction. The latter appears
to better predict the first extrema of the data signals, while The MAP prediction fits better the signal in
average over the whole range of data (as measured by the likelihood). Moreover, the data are contained
within the interval M(ξMAP)± 3 σMAP where σMAP(t) is the inferred total standard deviation of the noise
ε(t) (summing σMAP

1 and σMAP
2 ). In fact, it is likely that the GC nominal values are overfitting the noisy

data.
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Figure 6: Comparison between the data and GeoClaw predictions with the MAP estimate and the nominal value. The bias
is taken into account for the MAP output. The shaded area corresponds to θMAP

1 + M(ξMAP) ± 3σMAP, where σMAP =
σMAP

1 + σMAP
2 .

In Figure 7, a comparison of the actual error between the observations and numerical model predictions
at ξ = ξMAP is provided. A random sample of the noise ε(t) with the MAP hyperparameter (θMAP) is also
plotted for illustration. We observe a similarity between the actual prediction error and the sample of the
noise model. In particular, the amplitude of the error and the correlation time are respected.

A more quantitative comparison of the two noise models can be obtained by computing their Akaike
information criterion (AIC) and the Bayesian information criterion (BIC) [7]. These criteria are defined
respectively by

AIC = −2 logL+ 2(p+ q),
and BIC = −2 logL+ (p+ q) logn,

where L is the maximum of the likelihood function, p+ q is the number of free parameters associated to the
noise model and n is the number of observations. They both measure a trade-off between the goodness of
fit (−2 logL) and the complexity of the model p+ q or (p+ q) logn. Note that n = 223, so logn = 5.41 and
therefore the BIC is more stringent than the AIC. The smaller the value of the criteria, the better the noise
model to represent the data given the prediction model.
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We denote by AICW (resp. AICC) the AIC associated to the white Gaussian noise model (resp. proposed
non-stationary correlated noise model), and BICW and BICC their corresponding BIC. Computing the
maximum likelihood L with the differential evolution algorithm, their values are

AICW = −877.01, AICC = −1508.46,
and BICW = −854.53, BICC = −1479.08.

These results clearly show that the proposed non-stationary noise is the preferred model. According to Kass
and Raftery [17], the fact that BICW −BICC > 10 indicates that the evidence against the white Gaussian
noise model is strong.
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Figure 7: Comparison of the error between the data and the model prediction for ξ = ξMAP (solid line) and a random sample
of the inferred noise with hyperparameters θ = θMAP (dashed line).

To complete this section, we provide the posterior marginal distributions of the inferred model parameters
ξ and hyperparameters θ. These densities were estimated from the MCMC samples, using a standard
kernel density estimation (KDE) method, in the case of the correlated noise model. Figure 8 shows the
marginal posterior distribution of the earthquake location, in terms of canonical coordinates (ξ1, ξ2) (left
plot) and corresponding latitude and longitude coordinates (right plot). The bimodal character of these
inferred parameters is clearly visible, with two pronounced maximums in the marginal posterior. The MAP
point roughly coincides with the maximum of the most northern pick, which is however located at the
south of the GeoClaw nominal point. The unidimensional marginal posterior distributions of the model
parameters, latitude, longitude, strike and slip, and hyperparameters, θi, are shown in Figures 9 and 10
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respectively. Again, the multimodality of the posterior marginals of the parameters is clearly visible. In
contrast, the posterior marginal distributions of the hyperparameters are highly concentrated around their
MAP point, θMAP, confirming that the proposed noise model is accurately inferred and suitable to represent
the discrepancy between the model prediction and the observation data.
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Figure 8: Kernel density estimation of the marginal posterior distribution fξ1,ξ2 (top plot), and corresponding latitude and
longitude coordinates.

5. Surrogate modeling

The objective of this section is to compute an accurate surrogate model of the signal at the buoy with
respect to the posterior distribution. First, a novel non-intrusive spectral projection method is introduced
in Section 5.1 that yields accurate metamodels for low-order polynomial chaos expansions by smoothing the
discontinuity related to the arrival of the wave. The model is further reduced in Section 5.2 by selecting
the features of the signal that are important for the inference. This is achieved by using a singular value
decomposition with a suitable norm. The accuracy of the models with respect to the posterior distribution
are assessed by using the Kullback-Leibler divergence, a standard tool in information theory.

5.1. Preconditioning of the polynomial chaos approximation
As mentioned above, one of the key features of the prediction of the sea-surface anomaly is the presence of

a pre- and post wave-arrival periods. This feature reflects the wave propagation dynamics and the hyperbolic
nature of the prediction model. For the present setting, the PC representation of the dependence with the
parameter ξ of the model prediction is challenging. Indeed, it is well known that purely hyperbolic models
can introduce discontinuities and shocks that compromise the spectral convergence of PC expansion on
smooth bases, requiring some ad-hoc treatment such as multi-resolution schemes at the parametric level.

Such effects are illustrated in Figure 11, which compares the model prediction at a particular value of
the parameters ξ and its truncated PC approximation (for a polynomial degree of 2). The model prediction
consists in a constant elevation, until t ≈ 3h, followed by a sharp increase of the sea surface anomaly and
subsequent oscillations. The PC approximation exhibits spurious oscillations prior to the actual wave arrival
time, that is for t < 3h. This is caused by a slow convergence of the PC approximation and Gibbs oscillations,
as the sea surface anomaly is finite or exactly zero prior to the arrival time of the waves which varies with ξ.
In addition, it is seen that at later time the predicted surface anomaly is not perfectly represented, because
of complex dependences with ξ arising from multiple reflection waves.
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Figure 9: Marginal posterior distribution of model parameters as indicated.

We propose in this section a preconditioned NISP (PNISP) [2] strategy to improve the PC approximation
of the model prediction in the neighborhood of the arrival time of the wave. The technique is based on
two successive NISP approximations associated with an appropriate stochastic time shift which aims at
smoothing the dependence with respect to ξ of the sea surface anomaly for t ≈ 3h.

5.1.1. Preconditioned non-intrusive spectral projection
As before, we denote by M(t; ξ) the predicted sea surface anomaly at parameter ξ and time t. We first

introduce the arrival time random variable a : Ξ→ R defined by

a(ξ) = min {t ∈ (2 h, 5.5 h); M(t; ξ) ≥ mtol} . (5)

It is in fact the first time at which the sea surface anomaly predicted by the numerical model exceeds a
prescribed tolerance mtol = 10−2 m. We have chosen the time interval such that the set

{t ∈ (2 h, 5.5 h); M(t; ξ) ≥ tol}

is never empty and the arrival time is always defined.
The shifted (or reference) time τ is defined by τ = t− a(ξ), and the transformed signal Mτ (τ ; ξ) by

Mτ (τ ; ξ) = M(τ + a(ξ); ξ),
or M(t; ξ) = Mτ (t− a(ξ); ξ).

The transformed signals are therefore synchronized, in the sense that Mτ (0; ξ) = M(a(ξ); ξ); hence, in the
reference time τ , all the waves are arriving at τ = 0 for every ξ ∈ Ξ. This implies that Mτ satisfies the
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Figure 10: Marginal posterior distribution of the proposed correlated noise model hyperparameters θi as indicated.
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Figure 11: Comparison between the output of GeoClaw for a particular value of the parameter ξ and the evaluation of the
corresponding truncated PCE of the model with degree 2 in all dimensions.
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condition
Mτ (0; ξ) = mtol, ∀ξ ∈ Ξ.

The synchronization procedure is illustrated in Figure 12. The left plot shows the model predictions M
in the original time t for two sampled values of ξ. The right plot shows the corresponding transformed
predictions Mτ , highlighting the synchronization of the two wave arrival times.
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Figure 12: Evaluation of predictions M (left panel) and shifted predictions Mτ (right panel) for two sampled values of ξ.

In practice, the PNISP method uses the set of model predictions M(t, ξz) at the quadrature points ξz,
to first determine a(ξz) and subsequently the PCE of the arrival time. With the notations introduced in
Section 3.2, the PCE coefficients of a(ξ) are given by

aα ≈
1

E(ψ2
α)
∑
z∈Z

wza(ξz)ψα(ξz), ∀α ∈ Im.

The model prediction is finally approximated by the transformation

M(t; ξ) ≈ M̃(t, ξ)

=
∑
α∈Im

Mτ,α

(
t−

∑
α∈Im

aαψα(ξ)
)
ψα(ξ),

where
Mτ,α(τ) = 1

E(ψ2
α)
∑
z∈Z

wzM(t− a(ξz); ξz).

Note that the same PC basis is used for expanding both the arrival time a and prediction M . As before,
we use bases (ψα)α∈Im corresponding to tensorized Legendre polynomials that are orthogonal with respect
to the inner product associated to the uniform prior distributions, with associated fully tensorized Gauss-
Legendre quadrature rules. The PNISP method also requires the introduction of an additional time mesh
in the scaled time τ and interpolation procedures between discrete times (see [2] for more details).

The effect of the preconditioning can be appreciated in Figure 11 where the PNISP approximation is
shown for the same ξ value as for the original prediction and direct NISP. It is seen that the pre-arrival
time spurious oscillations have completely been removed, while the subsequent time oscillations remains of
similar quality as for the direct NISP approximation. For a more qualitative comparison we introduce the
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following relative L2 error measure ε(tf ), between the original prediction M(t, ξ) and its PC approximation
M̃(t, ξ) for the NISP and PNISP methods. This error is defined for tf > 3 h as

ε2(tf ) =

∫ tf

2.5 h
E
(
|M(ξ, t)− M̃(ξ, t)|2

)
dt∫ tf

2.5 h
E
(
|M(ξ, t)|2

)
dt

, (6)

where the expectations are with respect to the prior distribution of the parameter ξ (uniform). In practice
a Monte Carlo estimation is performed to estimate the relative error, using 10,000 sample points.

The results are reported in Figure 13 as a function of the analysis times tf and for different PC expansion
orders. We consider here the convergence with respect to the partial degree of the multivariate polynomial
defined as the maximum degree of the univariate polynomials used in the tensorization. It is first observed
that the approximation error decays for both NISP and PNISP expansions and all tf , though it tends to
level as the polynomial degree increases for the largest tf shown. Also, the improvement carried by the
preconditioning of the PC projection is seen to be more significant for low expansion order, while the two
approaches tend to be similarly accurate at higher orders. Furthermore, the improvement is more pronounced
for the lowest tf , that is close to the waves arrival time, than for longer analysis times as synchronicity is
progressively lost.
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Figure 13: Relative L2 error norm ε(tf ) (see (6)) for the NISP (solid lines) and PNISP (dashed lines) approximations, for
different maximum partial degree of the tensorized Legendre polynomials basis.

In order to analyze the convergence of the truncated PCE ã(ξ) computed by NISP to the arrival time
a(ξ), we introduce the relative L2 error εa defined by

ε2a =
E
(
(a(ξ)− ã(ξ))2)
E (a(ξ)2) .

The convergence of the L2 error with respect to the maximum partial degree of the polynomial is illustrated
in Figure 14, where the expectations are estimated from a 10,000 random samples drawn according to the
prior distribution. An order 1 approximation of the arrival time yields a relative L2 error of 3.03 × 10−3.
This indicates that the dependence of the arrival time on the parameter is mostly affine. Moreover, the
empirical mean and standard deviation of the arrival time are respectively 2 h 56 min and 7 min, which
suggests that the arrival time is not constant and the linear terms are important.
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Figure 14: Convergence of the relative L2 error norm for the NISP of the arrival time with respect to the maximum partial
degree of the tensorized Legendre polynomials basis.

5.1.2. Inference results
It can be concluded from the previous numerical results that the preconditioning improves the quality

of the PC approximation, principally in the neighborhood of the arrival time where it allows for an eventual
significant PC order reduction. For the whole observation range, that is large tf , the effect can appear
disappointing with a less significant improvement reported, but we stress that the PNISP and NISP methods
have the same computational complexity as they use the same set of quadrature points. However, we claim
that having an accurate PC surrogate of the predictions around the arrival time is crucial for the inference
problem. This can be anticipated by the inference results reported in the previous section, where the large
level of inferred noise, after the arrival time, indicates that the latest observations are not very informative.
To prove this claim on the dominant importance of the model accuracy around the arrival time of the wave,
we estimate the Kullback-Leibler divergence (KLD) [18] between the prior and posterior distributions, for
the preconditioned and direct NISP PC surrogates and different expansion orders. Given two distributions f0
and f1, the KLD DKL (f0||f1) of f1 from f0 measures the information gain achieved by using the distribution
f1 instead of f0. It is defined by

DKL (f0||f1) =
∫

Ξ

∫
Θ
f0(ξ, θ) log f0(ξ, θ)

f1(ξ, θ) dξ dθ

= Ef0

(
log f0

f1

)
,

with the particular property that DKL (f0||f1) = 0⇔ f0 = f1.
Given a PC model M̃ , we are interested in the KLD between the corresponding posterior distribution
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Figure 15: Estimates of the posterior entropy with respect to the maximum partial degree of the PC basis and NISP and
PNISP methods as indicated.

fξ,θ( · |Y = y, M̃) and the prior distribution fξ,θ. The KLD is then

DKL

(
fξ,θ( · |Y = y, M̃)||fξ,θ

)
=∫

Ξ

∫
Θ
fξ,θ(ξ, θ|Y = y, M̃) log fξ,θ(ξ, θ|Y = y, M̃)dξ dθ

−
∫

Ξ

∫
Θ
fξ,θ(ξ, θ|Y = y, M̃) log fξ,θ(ξ, θ)dξ dθ

= −H(fξ,θ( · |Y = y, M̃)) + C,

where H(f) = −
∫

Ξ f(ξ) log f(ξ)dξ is the entropy of f and C is a constant due to the uniform priors. Hence,
we can characterize the information gain between the posterior and the prior distributions by computing
the entropy of the posterior distributions.

Concerning the practical estimation of a posterior entropy, a Markov chain of 4×105 samples is generated
with the corresponding metamodel M̃ , after a burn-in period of 105 samples. The samples are used to
estimate the posterior distribution by means of a Kernel Density Estimation method [24], and subsequently
the expectation H(f) = −Ef (log f) from the sample set.

These posterior entropy estimates are shown in Figure 15, for varying maximum partial degree of the
PC basis and for the NISP and PNISP methods. It is seen that the preconditioning yields entropy estimates
that depends much less on the polynomial degree compared to the NISP-model based estimates. In other
words, the inference is more robust at low PC expansion orders for the PNISP method than for the NISP
method, and the faster convergence of the entropy for PNISP reflects the importance of the information
related to the wave arrival time.

5.2. Inference from reduced models
The previous experiment has evidenced that some features of the model M are more important than

others for the purpose of inferring ξ from the observations. In this section, reduced models for Mτ are
proposed as alternative to the full model in the inference problem. In particular, we will reduce the discretized
model Mτ based on singular value decomposition (SVD). The goal is to compress the model, by means of a
decomposition into a few elementary signals, in a way that the inferred posterior distribution is preserved,
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i.e. the reduced model still contains meaningful information about the inferred parameter ξ. In all the
numerical experiments proposed in this section, the hyperparameter θ is set to θMAP (see Equation (4)) and
we use PC expansions with partial degree 9.

5.2.1. Model reduction
The shifted time τ is discretized on a fixed uniform grid (τi)Ni=1. We shall denote M(ξ) the random vector

with components Mi(ξ) = Mτ (τi, ξ). Let A ∈ RN×N be a symmetric positive definite matrix, 〈 · , · 〉A be the
associated inner product defined by 〈u, v〉A = uTA−1v and ‖ · ‖A be the induced norm. The vector M(ξ)
is assumed to be A-square integrable, meaning that Eξ(‖M‖2A) < ∞. In this section, we denote Eξ( · ) the
expectation with respect to the prior distribution of ξ, that is fξ(ξ).

Now, we would like to approximate M with a rank-r approximation, under the form

Mr(ξ) =
r∑
i=1

σiZiλi(ξ),

where σi ≥ 0, Zi ∈ RN and λi ∈ L2(Ξ). Given the tensor structure of the space of A-square integrable
functions [14], the optimal low-rank approximation with respect to the norm (Eξ(‖ · ‖2A)) 1

2 is given by a
truncated singular value decomposition.

The dominant left singular vectors (Zi)ri=1 and singular values (σi)ri=1 are computed by taking the r
dominant eigenpairs (Z, σ2) of the eigenvalue problem

Eξ(M 〈M, Z〉A) = σ2Z ⇔ Eξ(MMT )A−1Z = σ2Z.

The matrix A being symmetric and positive definite, the eigenvalue problem can be recast as

Eξ(MMT )A−1Z = σ2Z,

and subsequently by introducing the change of variable Z̃ = A−1Z, yielding the generalized eigenvalue
problem

Eξ(MMT )Z̃ = σ2AZ̃, Z = AZ̃.

Due to the orthogonality of the singular vectors, the dominant right singular vectors (λi)ri=1 are given for
σi > 0 by

λi(ξ) = 1
σi
〈Zi,M〉A .

The matrix Eξ(MMT ) is computed from the polynomial chaos expansion M(ξ) =
∑
α∈Im

Mαψα(ξ). Given
the fact that (ψα)α∈Im is an orthogonal family for the inner product 〈 · , · 〉L2 , we have

Eξ
(
MMT

)
=
∑
α∈Im

∑
β∈Im

MαMT
β 〈ψα, ψβ〉L2

=
∑
α∈Im

MαMT
α ‖ψα‖

2
L2 .

Concerning the metric A−1, we consider the following two possibilities. The first one is the identity,
A = I, that leads to the standard SVD. In fact, this choice corresponds to the natural discretization of the
L2 inner product in the τ -range, since the discretization of the shifted time is uniform. It means that all
discrete times τi are given the same importance. The associated basis will be denoted by (ZI

i )ri=1.
The second case corresponds to the Mahalanobis distance and is based on the covariance of the Gaussian

noise ετ , discretized at the time τi. The Gaussian noise ετ is related to the previous correlated noise model
ε of Section 4.2 by

ετ (τ) = ε(τ + 3 h).
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Thus, the correlated noise with the Matérn covariance starts at τ = 0. The norm induced by this choice
favors the components in M that are associated to a low noise level and that can then be properly inferred.
Therefore, this is the natural norm to reduce the forward model in view of solving the inference problem,
because of the form of the Bayesian model in Equation (1) and the assumed noise structure. Indeed, the
posterior distribution is such that

fξ(ξ|Y = y, θ = θMAP) ∝ exp(−1
2 ‖y −M(ξ)−mε‖2ε),

where ‖ · ‖ε = ‖ · ‖Cov(ετ ) is the Mahalanobis distance. The basis associated to the Mahalanobis distance
will be denoted by (Zεi )ri=1.

The normalized dominant singular values σIi /σI1 and σεi /σ
ε
1 are plotted in Figure 16. They exhibit a

similar decay from i = 1 to i = 30. Beyond that point, the normalized singular values associated with the
Mahalanobis norm exhibit a slower decay. It is important to note that the decay of the singular values are
not an indicator of the efficiency of the approach since we are interested in the estimation of the posterior
distribution, and not the model M.
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Figure 16: Normalized dominant singular values for the L2 and Mahalanobis norms.

The dominant eigenvectors ZI
i and Zεi are reported in Figure 17. These eigenvectors have been scaled

such that
max
j
|ZI
i (τj)| = max

j
|Zεi (τj)| = 1.

The eigenvectors having arbitrary orientation, we fix the signs of the (Zεi )ri=1 to maximize the alignment
between ZI

i and Zεi . This is achieved by ensuring

(ZI
i )TZεi ≥ 0.

It is seen that the vectors ZI
i and Zεi are similar for i ≤ 13. Starting from i = 14, the vectors present

different features, with visible differences in local amplitudes and frequencies.

5.2.2. Inference results
We now perform the Bayesian inference using the reduced models Mr(ξ) for different ranks r and the

two norms of the decomposition. It is clear that for r < N , the subspace spanned by the r dominant
mode depends in general on the selected norm, and we expect the resulting posterior distribution to be
consequently affected.
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Figure 17: First 16 dominant eigenvectors ZI
i and Z

ε
i , corresponding to the classical L2 norm (solid line) and the Mahalanobis

norm (dashed line) respectively.

As before, we start by comparing the posterior distributions for the different reduced models by comput-
ing their entropy. The convergence of the entropy with respect to the size r of the truncated bases is shown
in Figure 18. The entropies for the two reduction norm quickly converge to the reference entropy, the latter
being computed from the full model obtained by the PNISP method with degree 9. This convergence means
that the shape of the posterior distribution is well-captured with few tens of eigenvectors for the two norms.
It is also remarked that the reduced model for the Mahalanobis distance seems to converge faster with r
compared to the classical L2 norm model. Note that the values of the entropies differ between Figures 15
and 18. This is due to the use of different expectations in the definition of the entropy, the usual one in
Section 5.1 and the conditional expectation in this section, i.e. E( · |θ = θMAP).
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Figure 18: Convergence of the entropy of the posterior distribution with respect to the size r of the reduce models.

The entropy measures the information content of the posterior distribution, and thus only characterize
the shape. As an example, the multivariate Gaussian distribution fη, with values in RN and covariance Cη,
has an entropy

H(fη) = N

2 (1 + log(2π)) + 1
2 log |Cη|,

which depends only on the covariance Cη. To further verify the convergence of posterior distributions, with
the size r of the reduced model, we also compare the convergence of the (Euclidian) distance between the
posterior means. Let ξ and ξr denote the posterior distribution means associated to the full and reduced
models respectively, the error in mean is then defined by

er =
∥∥ξr − ξ∥∥∥∥ξ∥∥ .

The convergence of er is illustrated in Figure 19 for the two reduction norms. We can see that the Maha-
lanobis distance greatly improves the convergence with r of the posterior mean, compared to the L2 norm.
In particular, for r = 15, the reduced model based on the standard L2 norm is not able to locate properly
the posterior distribution, with a relative error on the mean eI

r = 28.8%. In contrast, the error on the mean
for the Mahalanobis norm is eεr = 3.53%.

These numerical experiments demonstrate that selecting carefully the norm to construct the reduced
model can have an important effect on the dimension of the reduced model needed to achieved a certain
reduction error on the inferred parameters, as measured here by the entropy and mean of the posterior
distribution. At a more fundamental level, these examples highlight the fact that not all features of a model
are useful for the inference task, nor it is important that the model be accurate over the whole range of
observations. Instead, our simulations suggest to consider reduced models involving few carefully selected
features, with the possibility to alleviate the computational times involved in its construction and evaluation.

6. Conclusion

We investigate a computational approach to propagate uncertainty in the parameters of the Okada
model of the 2010 Chile earthquake, and to calibrate the uncertain parameters based on data collected by
a DART R© station.
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Figure 19: Convergence of the mean of the posterior distribution with respect to the size r of the reduced models.

The methodology consists in first establishing an approximation of the model response using a polynomial
chaos expansion. In order to calibrate the uncertain parameters based on the data collected by the DART R©

station using a Bayesian formalism, we have first explored the use of an additive Gaussian noise model in
the likelihood function. A more elaborate likelihood function was also considered by incorporating a non-
stationary correlated Gaussian noise model that takes into account the two different regimes observed in the
measurements, namely before and after the arrival of the tsunami wave. We show that considering a suitable
noise model is crucial to achieve a robust and reliable parameter inference. In particular, the inferred solution
obtained using the proposed correlated noise model outperforms the solution obtained using classical white
noise assumption in terms of Akaike and Bayesian information criteria; it also stabilizes the MCMC sampling
from the corresponding posterior distribution.

A preconditioned non-intrusive spectral projection strategy is also proposed to improve the accuracy of
the PC model regarding the arrival time of the tsunami. Specifically, the polynomial chaos expansion of the
arrival time of the tsunami wave at the buoy location is first computed. The resulting representation is then
used to construct a time transform (shift) that smoothes the representation of the local wave-height signal.
A polynomial chaos expansion of the signal is then developed as a function of the shifted time variable.
Analysis of computations indicates that for low-order expansions, the preconditioned PC representation
is more accurate in term of the L2 norm than the same-order expansion obtained with direct application
of a non-intrusive spectral projection approach. Moreover, using the preconditioned representation, the
convergence to the posterior distribution is more stable with respect to the Shannon entropy than is observed
with a direct NISP approach.

We finally explored the possibility of performing the Bayesian inference based on reduced PC model
representation determined using optimal decompositions. Two approaches were considered. In the first,
the decomposition was applied by relying on the L2 norm (in time) optimality, whereas the second relied
on the Mahalanobis distance, i.e. on the metric induced by the inverse of the covariance of the noise. The
analysis showed that the second reduction method stabilizes the convergence of the posterior distribution
with respect to the entropy and to the mean posterior as well. On the other hand, the use of the standard
L2 norm degrades the convergence rate with the reduced model dimension, especially with respect to the
posterior mean.

Future works will focus on a goal-oriented model reduction applied to Bayesian inference. The objective
is to be able to compute a reduced forward model that preserves the features of the posterior distribution. In
particular, we are interested in the development of variational principles applied to model reduction based
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on the information theory, involving the Shannon entropy and the Kullback-Leibler divergence.
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