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Abstract

We investigate numerically the dynamics of a laminar-turbulent interface in plane Couette flow

in the case where it is parallel to the mean flow direction. It is shown that the motion of the

interface is essentially stochastic and can be modelled as a continuous-time random walk. Statis-

tical analysis suggests a Gaussian diffusion process. The average speed of the interface and the

corresponding diffusion coefficient are determined as functions of the Reynolds number Re, as well

as the threshold value above which turbulence contaminates the whole domain. For the lowest

values of Re, the stochastic dynamics competes with another deterministic regime of growth of

the localised perturbations. The latter is interpreted as a depinning process from the homoclinic

snaking region of the system. An extension of this interpretation to more general orientations of

the interfaces is suggested.
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1. INTRODUCTION

Transition to turbulence in wall-bounded flows has been a subject of intensive research

for over a century. Many shear-induced flows fall into the class of subcritical transitional

flows, i.e. excursions away from the laminar state can happen despite the linear stability

of the underlying base flow. This necessarily points out the sensitivity of these flows to

various kinds of disturbances with a finite amplitude. Closely associated to subcriticality is

the observation that the effective transition to turbulence does not occur simultaneously

at all locations in space, depending on the nature of the initial disturbances to the base

flow. At any instant in time, the transitional flow can be formally described as the

competition of two coexisting phases, namely the (absorbing) laminar and the (active)

turbulent phase, separated by an unsteady interface with a dynamics of its own [1]. Early

work by Emmons [2] shows that localised disturbances in boundary layers naturally evolve

into organised patches called turbulent spots, fully localised in the in-plane directions.

The border of a single turbulent spot is reported to expand with rather well-defined

speeds which increase monotonically with the associated Reynolds number. In a certain

parameter range, there has been evidence for stable laminar-turbulence coexistence since its

experimental observation by Coles [3] and Van Atta [4] in counter-rotating Taylor–Couette

flow. The interfaces were then surprisingly found to be oblique with respect to the principal

flow direction. Obliqueness of the interfaces appears as a robust feature of spatially

intermittent open flows near the onset of transition. Localised turbulent structures are

also common in cylindrical pipe flow, they are called ”puffs” when their streamwise

length stays statistically constant and referred to as ”slugs” when their length increases

with time [5]. In all previous examples, the dynamics of the interface separating the

laminar from the turbulent phase is highly unsteady. Understanding how such an interface

evolves in space and time over long times is the key for predicting whether turbulence

can eventually spread, be it partially, whether it will eventually receed, leaving the sta-

ble base flow as the unique equilibrium phase of the system, or whether patterns will emerge.

The present investigation focuses on the case of plane Couette flow (PCF), the incom-

pressible flow between two parallel counter-sliding plates of infinite extent. The Reynolds

number is defined here classically as Re = Uhν, where U , h and ν are the absolute velocity
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of each plate, the half-gap between the plates, and the kinematic viscosity of the fluid,

respectively. PCF is a convenient prototype for the study of subcritical transition since the

associated base flow has a simple analytical expression u(y) = Uy/h (with y the wall-normal

coordinate) and is furthermore linearly stable for all values of the Reynolds number [6].

Its mean advection speed is zero which also enables easier tracking of disturbances. PCF

experiments conducted in the early 1990’s have focused on the dynamics of turbulent spots.

Typically, though turbulent spots have been observed for Re as low as 280, they keep a finite

probability to relaminarise up to Re = Reg ≈ 325 (see references [7],[8], [9], [10] and [11]).

For Re ≥ Reg, a turbulent state is observed to compete with the metastable laminar regime

as for the final regime. In the range Re ∈ [325, 420], this turbulent regime is characterised

by an incomplete contamination by the turbulent phase. When progressively moving away

from Reg, spatio-temporal intermittency becomes a dominant feature of the system, causing

growing turbulent spots to split, merge and deform obliquely. The turbulent structure

grows in a very unpredictable fashion, as shown by the oblique or labyrinthine patterns

observed in experiments and in recent simulations [12–14]. Above Re = Ret ≈ 420, the

growth of turbulent spots with time is best described as self-similar [15], their in-plane

shapes being describable either as rhombs or as ellipses. Inside the turbulent spot and near

its boundaries, the flow is locally dominated by streamwise-elongated streaks associated to

counter-rotating streamwise vortices. Outside the localised spot, the velocity field departs

slightly yet unambiguously from the laminar Couette flow, highlighting the presence of

a robust large-scale secondary flow [15–17]. This secondary flow diverges away from the

turbulent region in the spanwise direction, re-entering in the streamwise direction. It has

been noted in several experimental studies that the side tip of a turbulent spot proceeds into

the laminar region perpendicular to the main stream (the spanwise direction), suggesting

a specific mechanism for the propagation of turbulence, called ”growth by destabilisation”

[18]. Difficulties in the interpretation of this specific mechanism arise naturally because of

the many kinematic ingredients simultaneously at play: the streamwise streaks (spanwise

modulations of the streamwise velocity, indicators of the turbulence), the in-plane secondary

flow, as well as the mysterious presence of spanwise-propagating waves noted by several

authors. It is thus desirable to find a convenient set-up where all these ingredients can be

studied separately, with the hope that the resulting dynamics can shed light on the full

mechanism. Noting that the secondary flow exists because of the localisation of the spot
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in both in-plane directions, we will consider here the case where the laminar-turbulent

interface is parallel to the streamwise direction. This is achieved using direct numerical

simulation (DNS), by imposing periodicity in the streamwise directions, with a wavelength

smaller than the typical streamwise extent of a localised spot. By doing so, the secondary

flow is suppressed, while sustained streak-dominated turbulence is still possible. This

choice should be seen as a numerical trick exploiting the advantages of Fourier-based

spectral methods rather than as a limitation, as it enables one to investigate the spanwise

propagation of turbulence independently from all other three-dimensional mechanisms.

Obvious drawbacks due to the restraining geometry are the impossibility for oblique

large-scale patterns to emerge, as well as artificially infinite velocity correlations along the

streamwise direction inside the turbulent zone. As we shall see, even within this simplified

framework the situation remains far from trivial because the fronts do not propagate with

a constant velocity, necessitating a fully statistical treatment.

The paper is organised as follows: Section 2 contains a description of the dynamics

observed in our numerical simulations for several values of Re. Section 3 focuses on

the statistical analysis of front motion, culminating in the quantitative determination of

the mean front speeds. Section 4 examines further the dynamics of the fronts for the

lowest values of Re analysed previously and highlights a radically different (deterministic)

propagation mechanism. All the results, as well as their extension to generic shapes of

laminar-turbulent interfaces, are eventually discussed in Section 5.

2. DIRECT NAVIER–STOKES SIMULATIONS

2.1 Numerical procedure

In this paper we use the classical notations to describe the geometry of plane Couette

flow. The fluid is sheared between two parallel plates of velocities ±U in the streamwise

direction x, separated by a gap 2h in the wall-normal direction y. The spanwise direction

is denoted z. The three-dimensional flow is governed by the incompressible Navier–Stokes

equations with no-slip boundary conditions at both walls. Velocities, space and time are

4



non-dimensionalised by U , h and h/U , respectively. The spectral representation of the flow

is based on Chebyshev polynomials in the y-direction, and a discrete Fourier decomposition

in both x and z [19]. This implies periodic boundary conditions in the in-plane directions,

with the associated wavelengths denoted Lx and Lz, respectively. Time-stepping is achieved

by a fourth-order Runge-Kutta integrator with adaptative variable timestep. The number

of spectral modes is determined by the triplet N = (Nx, Ny, Nz), with the extra use of the

3/2-dealiasing rule for the evaluation of the nonlinear terms in the wall-parallel directions.

We perform well-resolved simulations in a domain D1 of size (Lx, Lz) = (10.417, 250),

using a resolution N = (32, 49, 1024). For the simulations at the lowest values of Re, the

slow spreading of localised perturbations made it possible to use a shorter domain D2 of

size (Lx, Lz) = (10.417, 125) with half the number of collocations points in the spanwise

direction, i.e. N = (32, 49, 512). The short streamwise extent Lx is used as a numerical

trick forcing potential laminar-turbulent interfaces to be orthogonal to the spanwise

direction z, preventing the formation of a secondary large-scale flow around localised

spots. The value of ≈ 10 has been selected because it is of the order of magnitude of the

wavelength of the streak instabilities observed near the spanwise tips of turbulent spots

(see Ref. [15]). Larger wavelength instabilities responsible for potential shape modulations

of the front are naturally excluded from the current analysis study as they are expected

to be one order of magnitude larger and to be driven by the dynamics of the large-scale

secondary flow.Note that a similar geometry has been used by Barkley & Tuckerman [20]

(Fig. 15) in quenching experiments with (Lx, Lz) = (10, 120) down to Re ≈ 210. More

recently, edge states and other spanwise localised finite-amplitude solutions were found in

a similar geometry with (Lx, Lz) = (4π, 8π) [21] and (4π, 16π) [44].

Several types of initial perturbations of the base state were used in the course of the

present investigation, either localised or not. Localised conditions are identical to the ones

used by Duguet et al. [23], yet with a possible prescribed rotation around the y-axis in order

to break the initial symmetry. At high enough Re and when applied with a sufficiently

large amplitude, those localised perturbations lead to a turbulent flow localised in the

z-direction, which for convenience will be referred to as a ”spot” for this system (though

strictly speaking, a real ”spot” should be also localised in the x-direction). For a given

value of Re, it is also possible to use a spot generated at another (generally higher) value of
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Re as an initial condition. Exploiting the subcritical nature of the system, this second type

of disturbance will be used mostly at the lowest value Re in order to increase the chances

of effectively triggering turbulent motion.

Identification of the fronts

Simulations were performed for Re in the range [180, 650] and with computational do-

mains D1 or D2. Typical traces of vrms(t) on a time interval [0, 1500] are shown in Fig. 1

for various values of Re. Here, as in Duguet et al. [12], vrms stands for the root mean square

of the y−component of the velocity. Note that vrms = 0 denotes a globally laminar flow so

that vrms can safely be interpreted as a measure of the spatial spreading of the turbulence,

weighted by its local intensity. From the fig. it is clear that for Re > 500, vrms rapidly

increases both with time and with Re, though the increase with time is not strictly linear.

For Re betwen 400 and 500, the signals contain more high-frequency components when Re

increases, while the average growth becomes slower for decreasing Reynolds. For Re below

400, the average increase in vrms is hardly noticeable on the time span shown here, suggesting

that turbulence spreading, if ever, occurs only in an intermittent way. Finally, for Re < 280,

signals of vrms(t) become extremely smooth, almost time-periodic, with a finite possibility

for sudden complete relaminarisation as seen here for Re = 210. For those values the signal

is so smooth that the dynamics can difficultly be termed ’turbulent’ in the light of Fig. 1.

The fact that non-trivial dynamics can be sustained for long times for surprisingly low values

of Re ≈ 200 was already documented in earlier computations where Re was decreased by

steps [20].

Because of the choice of a domain having a small extension Lx, the flow geometry is

nearly one-dimensional. It is thus convenient to analyse the motion of the fronts using

snapshots of the velocity field at a given streamwise location, say x = 0. Visualisation

of the dynamics is helpful for determining a relevant criterion for the identification of the

laminar-turbulent interface. Fig. 2 shows a selected part of the domain D1 during the

spreading of a spot at Re = 500, the displayed quantity being the total streamwise velocity

u = u(x = 0, y, z) at time t = 694. The main part of the picture is characterised by

nearly z-periodic undulations of the iso-lines of u which are typical of turbulent streaks.
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FIG. 1: Wall-normal root mean square velocity vs time for several values of Re

These undulations are marked by narrow zones, staggered on either wall, where the near-

wall value of u ≈ ±1 penetrates deeper into the flow towards the opposite wall, indicative

of local bursting events. Such bursting events are reminiscent of the mechanism unfolded

in Refs [24–26] in terms of dynamical systems, yet here in the context of a wide domain

allowing for the presence of an interface. The spanwise wavelength of these undulations is

approximatively equal to 4 but is far from being strictly constant [27]. This turbulent zone

extends here from the left of the picture (z = 0) up to z ≈ 45 where all iso-lines become

parallel and equi-spaced, indicating the laminar base flow. The front delimiting the laminar

from the turbulent phase in Fig. 2 is thus located at z ≈ 45. Note that this single snapshot

is a priori indistiguishable from the slice through a fully localised spot. Magnification

of the region z ∈ [35, 47] is shown in Fig. 3 in order to reveal the temporal dynamics

associated with the motion of the front for t ∈ [610, 710]. The sequence reveals that each of

the detached regions oscillates in a rather unpredictable way, but that its location remains

steady. The steady location of the streaks now distinguishes this system from the systems

with large Lx, where all streaks near the fronts are advected away (see Fig.7 in Ref. [9]). This
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FIG. 2: Streamwise velocity, Re = 500, t = 694, case (A), real aspect ratio.

discrepancy between simulation in the domain D1 and experimental findings is nothing but

the expected manifestation of the confinement in the x-direction, supressing the secondary

flow which advects the streaks away in the spanwise direction. Now focusing on the dynamics

near the interface, we can isolate the mechanisms responsible for the progression in z of the

interface. For t = 610 (Fig. 3), only three ejections (upwards or downwards) of streamwise

velocity can be observed, staggered on either wall. The rightmost ejection is located at

y = −1, z = 41 and faces quasi-laminar flow on the opposite wall at y = +1. For t = 629

four ejections are present in the figure, one additional ejection being at y = +1, z = 42,

now facing quasi-laminar flow on the opposite wall at y = −1. The pre-existing streaks stay

at their initial location, thus the advancement of the front between t = 610 and 629 must

correspond to the generation of a new streak at the opposite wall and not to a propagation

of the streak pattern. The sequences of intermittent generation events displayed in Fig. 3

suggests a contamination process occuring as follows. When a fluid ejection from one wall is

sufficiently intense, it affects the opposite wall, inducing there a compression of the iso-lines.

Because of the incompressibility constraint, the low-velocity fluid near that wall is deviated

towards both positive and negatives x-locations. This generates a deficit velocity in the

previously laminar zone near the same wall, in other words a new streak. The process then

starts again to contaminate the opposite wall as soon as a sufficiently large bursting event

occurs. This scenario highlights two facts: firstly, the motion of the front occurs via discrete

events, i.e. progress of the interface is not continuous but occurs on a finite distance at

given times. Secondly, weak fluid ejections are not sufficient to generate new streaks, as

shown by the aborted bursting event in Fig. 3 between t = 644 and t = 680. This suggests

that the motion of the front is due to local finite-amplitude instabilities of the flow, and not

to any linear instability of the flow at some distance away, as would be the case for pulled

fronts [28]. Note that this scenario relies on the presence of two walls, and its extension to

boundary layer flows (involving only one wall) remains an open question.

In competition with the generation process displayed in Fig. 3, there are also retreat
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FIG. 3: Spanwise development of a turbulent spot at Re = 500. Total streamwise velocity field in

the plane x = 0 at times t = 610, 624, 629, 644, 660, 680 and 710.

events where streaks near the interface disappear because the turbulent intensity has not

proven sufficiently large to sustain the streak. Intuitively, at large values of Re the turbulent

activity inside the boundary layers is intense, which will favour efficient bursting events and
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a rapid propagation of the front, while at low values of Re aborted bursting events will

dominate, forcing the front to retract.

The location of humps in the iso-lines appears as a natural means to identifying visually

streaks and the associated turbulent dynamics. In particular, the u = 0 isoline, which is at

y = 0 where the flow is laminar, is deviated towards one of the wall according to the upwards

or downwards ejections occuring near a wall at the same z-location. The y-coordinate of

this iso-line u = 0 then appears as a convenient measure of the local deviation from laminar

flow. Yet in order to avoid x-dependent quantities, we exploit the assumption of small Lx

and average over x the streamwise velocity u. We thus define the quantity Y (z, t) as the

wall-normal coordinate of the isovalue 〈u〉x = 0, where 〈u〉x(y, z, t) is the x-average total

streamwise velocity field, i.e.:

Y (z, t) = {y|〈u〉x = 0}. (1)

Note that Y (z, t) may not be uniquely defined if the distortion of the flow from the laminar

one is important such that 〈u〉x(y, z, t) has multiple zeros in y. During the course of this

investigation we have not stumbled on any difficulty related to an ill-posed definition of the

quantity Y , owing to the range of Re considered for which ejections remain rather mild.

Typical space-time diagrams of Y (z, t) are shown in Figure 4 for two simulations using two

types of initial conditions. The first simulation corresponds to the evolution of an initially

localized turbulent burst at Re = 370 (left plot) and the second corresponds to the evolution

of a homogeneous turbulent field at Re = 280 (right plot) where the initial condition is the

results of a simulation at higher Re.

An open issue remains the choice of an appropriate threshold value Yc to distinguish

laminar from turbulent domains. Owing to the absence of large scale secondary flow, as dis-

cussed in the Introduction, a sharp (faster than exponential) decay with z of all perturbation

velocity components away from the interface in the laminar domain is observed, hence the

proposed definition of the interface is rather insensitive to the specific choice for Yc. Taking

|Yc| = 0.2 in absolute value has proven a robust choice for the practical threshold criterion

in the definition of turbulence domains. The robustness of the analysis with regard to the

selection of the threshold value Yc is further discussed in the following section.
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FIG. 4: Space-time (z, t) diagrams for the quantity {y | 〈u〉x = 0}; Re = 370 from a localised

initial condition (left) and Re = 280 from a homogeneous turbulent initial condition (right).

3. STOCHASTIC MODELLING OF FRONT MOTION

3.1 The motion of the interface as a continuous time random walk

A large number of simulations has been performed, starting from either a localised distur-

bance or from a turbulent field at higher Re as shown in Figure 4. The analysis is based on

space-time (z, t)-diagrams of the quantity Y (z, t) defined in Eq. (1). All the diagrams shown

here are computed on a grid with spatial steps ∆z = 0.2 and ∆t = 5. The diagrams shown

in Fig. 5 correspond to one simulation at Re = 380. The top plot shows the colour-coded

values of Y (z, t). It is clear that the uniformly green areas where Y (z, t) ≈ 0 corresponds

to laminar areas, whereas the central domain where Y (z, t) significantly deviates from 0

corresponds to the turbulent spot. Using the criterion discussed above, we can extract the

iso-lines Y (z, t) = ±0.2 to better appreciate the structure of the turbulent spot and its

dynamics. The turbulent zone is here delimited by two asymmetric fronts. Each of the two

fronts clearly moves from or towards the turbulent area in discrete steps, gaining or losing

one streak (occasionnally several streaks at once). The time interval between two successive

events is variable, requesting a statistical description. The distance along which the front
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has advanced or retreated during one of these events is also not constant, firstly because

streaks do not possess a uniquely defined spanwise size, secondly because several streaks

can be gained or lost within a single ”event”. A convenient description of the motion of

each front, well-adapted to a statistical description, is within the frame of continuous-time

random walks (CTRW) [29]. Retreat and progress of a given interface are seen here as two

competing and complementary events occuring suddenly after a time T (”the waiting time”)

on a distance ∆z (the ”jump length”) . The CTRW process is here asymmetric, because the

events ”gaining” and ”losing” streak(s) are not equiprobable, inducing statistically a drift of

each front in one direction or the other. In the following, we shall use subscripts g to refer

to growth events (”gaining streaks”) and r to retreat events (”losing streaks”). We shall

assume that the random dynamics of the interface is a memory-less stochastic process, ho-

mogeneous in time and space. It implies that waiting times and jump magnitudes for r and

g events are statistically independent. With these assumptions, four cumulative probability

distributions are needed to fully characterise the random dynamics of interface:

• PTg
(T > t) (resp. PTr

(T > t)) : the probability that, the next event being a growth

(resp. retreat) event, it occurs after a waiting time T is larger than a time t > 0,

• P∆g
(∆z > L) (resp. P∆r

(∆z > L)): the probability that, the next event being a

growth (resp. retreat), the magnitude of the jump ∆z is larger than L > 0.

It is remarked that, because of the periodic conditions, fronts necessarly go by pairs, forming

at least one localised spot. Also, the probabilities P∆g,r
concern the (unsigned) jump mag-

nitudes and it will be necessary to introduce below their signed or oriented counterparts,

adopting a convention on the sign of ∆z depending on the type r or g of the event.

Note that the CTRW approach is only one possibility of modelling the motion of the in-

terface with the available data, and that it corresponds to a deliberate choice for a modelling

strategy. Whether such a description of the front motion is relevant for all values of Re has

to and will be discussed. Another modelling options, not discussed here, is the directed per-

colation approach using probabilistic cellular automata, for which a large body of literature

exists in the case of quasi-one dimensional systems such as ours (see e.g. Ref. [30]). One

reason to discard that approach in this investigation is that it would also require accurate

statistics of the laminar gaps forming within the system. This appears uselessly costly given
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the conclusions we wish to draw from this study, namely the average front velocity as a

function of Re.

z
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FIG. 5: Space-time diagrams for the quantity Y (z, t) (see text)for Re = 380. Top: Iso-contours of

Y (z, t) ranging continuously from −1 to 1. Bottom: Iso-contours Y (z, t) = ±0.2

3.2 Analysis of the front dynamics

For each value of Re in the range [230, 650], we performed independent simulations varying

the initial conditions to obtain space-time diagrams such as in Figure 5(b). Each of these
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FIG. 6: Probability distributions for the waiting times PTg
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and two values of the threshold Yc.

diagrams was subsequently automatically treated to detect laminar-turbulent interfaces and

extract waiting times and magnitude of the jumps, sorted by r or g events. All the data

were then collected to construct the four empirical distribution functions. Let us begin by

describing the distributions for the waiting times T . Figure 6 gathers data from several

simulations at Re = 380; the data suggest clearly that the distributions PTg
and PTr

can be

well fitted by exponential distributions. This suggests a Poisson distribution for the waiting

times regardless of which event is considered (g or r), confirming the memoryless character

of the dynamics. Note that the exponential behaviour is more convincing for PTg
than for

PTr
as the tails of the distributions are better converged for the former; it simply reflects the

fact that g-events are more probable for Re = 380 than r-events. Figure 6 also compares the

distributions obtained using two values for the criterion Yc = 0.2 and Yc = 0.4; it is seen that

the selected value for Yc has a marginal impact on the resulting empirical distributions of

the waiting times, in the sense that the discrepancies in the slopes are within the acceptance

range (of the order of the interpolation errors).

The empirical distributions of the waiting times corresponding to the values of Re

investigated are gathered in Figure 7. A clear Poissonian trend emerges for PTg
(top-plot

of Figure 7) at Re ≥ 300, with the slope montonously increasing with increasing Re. The
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cases 250 ≤ Re ≤ 290 are less clearly amenable to an interpretation as a memory-less

process, because of the presence of extreme events (very long waiting times). The data

are here insufficient to decide whether the extreme events only produce unconverged

statistics (still ruled by Poissonian dynamics) or if a second tail is emerging with a

different scaling [31]. For Re = 230 and less (not shown), the global deviation from

exponential distribution is large, suggesting a different process and motivating the analysis

presented in Section 4. Description of the retreat waiting time distribution PTr
(bottom

plot of Figure 7) reveals the same trends, however the slopes increase with increasing Re.

Furthermore, the analysis is blurred at high Re by the rarity of retreat events compared

to growth events: above Re ≥ 400, the occurence of retreat events would demand too

much simulation time (or equivalently too many independent simulations) to produce

converged statistics. In what follows, we will suppose that for Re ≥ 400, the waiting time

of r-event is exponentially distributed with mean 〈Tr〉 = +∞, i.e. retreat events never occur.

Similar observations hold for the empirical distributions for the magnitude of the r and

g jumps reported in Figure 8. Specifically, exponential distributions can be reasonably

assumed if one neglects rare events for the lowest Reynolds values. The implications of this

finding are important: as long as the exponential scaling holds, the motion of the front can be

thought of as a Gaussian (normal) diffusion process. In particular, there is little ambiguity

that the distributions do not follow a power-law behaviour, thus excluding a description in

terms of Levy flights and anomalous diffusion processes.

For a Poissonian distribution of the form P (X > x) ∼ e−
x
a , logarithmic interpolation of

the slope directly yields its average value 〈X〉 = a. We exploit this property to graphically

estimate the average waiting times 〈Tg〉 (resp. 〈Tr〉), i.e. the average waiting time given

that the next event is a g event (resp. a r event). Figure 9 presents the computed average

waiting times of the two r and g events as functions of Re, obtained by fitting the empirical

distributions shown in Figure 7. The error bars are constructed to graphically bracket the

empirical distributions and to account for some arbitrariness in disregarding rare events.

Figure 9 shows that the average waiting time 〈Tg〉 monotonically decrease with Re while

〈Tr〉 monotonically increases with Re. The two averages thus cross at a given value of Re,

Rec1 = 320 ± 10. The interpretation is straightforward: for Re > Rec1, the probability is

higher that the next event will be a growth event rather than a retreat event, regardless
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FIG. 7: Cumulative probability distributions for the waiting times PTg
(t > T ) (top) and PTr

(t > T )

(bottom) for various values of Re.

of the history of the front, while retreat events are favoured statistically for Re < Rec1.

The two average times coincide exactly only for Re = Rec1. There is a strong analogy with

the formalism adopted in studies of intermittent pipe flow, where single turbulent puffs can

statistically undergo complementary events, as they either relaminarise or split [32, 33].

We observe that Rec1 is strikingly close to the experimental threshold Reg ≈ 325 in large

domains [9, 12].
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FIG. 8: Cumulative probability distributions for the jump lengths PZg
(∆z > L) (top) and

PZr
(∆z > L) (bottom) for various values of Re.

Strictly speaking, this does not mean that the front is statistically steady at Re = Rec1,

nor that the turbulent domain statistically expands for Re > Rec1 or retracts for Re < Rec1,

since the jump length distributions must also be included in the picture. Equivalently

to the waiting times, the conditional averages 〈∆Zg〉 and 〈∆Zr〉 can be estimated from the

empirical distributions shown in Figure 8, under the assumption of exponential distributions.

Figure 10 shows that 〈∆Zg〉 decreases slowly with Re, as expected from the typical scaling
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FIG. 9: Mean conditional waiting times 〈Tg〉(Re) and 〈Tr〉(Re).

of the streak width in viscous units general to all turbulent shear flows [34]. The quantity

〈∆Zr〉, in the range where data are available, also decreases gently with Re. Rather than

the expected high-Re trend, the most striking feature of Figure 10 is the tendency of both

〈∆Zg〉 and 〈∆Zr〉 to significantly increase at low Re, up to much larger values than the

width of individual streaks. This confirms a posteriori the observation that multiple streaks

can be either gained or lost brutally near the interface. This behaviour is consistent with

an increase of the spanwise correlation length at low Re. The brutal increase also suggests

to interpret large retreat events as a partial relaminarisation of the flow. In addition, the

two values 〈∆Zg〉 and 〈∆Zr〉 are not equal, underlying the asymmetry between the g and r

mechanisms.

3.3 First moments of the interface location

Let us denote Z(t) the location of a single interface. Without loss of generality, it is

assumed that the turbulent domain is on the left side of the interface. Consequently, r

(resp. g) events correspond to negative jumps ∆z (resp. positive jumps ∆z). Recall that

PTr
(τ) and PTg

(τ) are the probabilities that the interface at Z(t) at time t will not undergo

any motion of type r and g respectively, in the time interval [t, t + τ) with τ ≥ 0. We have
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seen that the two distributions are reasonably approximated by exponential laws having

respective average waiting times 〈Tr〉 and 〈Tg〉,

PTr
(τ) = exp

(

− τ/〈Tr〉
)

, PTg
(τ) = exp

(

− τ/〈Tg〉
)

, (2)

where 〈Tr〉 and 〈Tg〉 depend on Re. Therefore, the probability that the interface undergoes

no motion in the time interval [t, t+ τ) is the probability that r and g motion will not occur

in this time interval, and is given by the product of the respective probabilities. Denoting

this probability PT (τ), we get

PT (τ) = PTr
(τ)× PTg

(τ) = exp
(

− τ/〈T 〉
)

, 〈T 〉 =
〈Tr〉〈Tg〉

〈Tr〉+ 〈Tg〉
, (3)

where 〈T 〉 is the average waiting time between two consecutive motions (of any type r or

g). Accounting for the orientation of interface, and introducing as πr(∆z) and πg(∆z) the

probability density functions of the r and g jumps

πr(∆z) =











0, ∆z > 0

≥ 0, otherwise
, πg(∆z) =











0, ∆z < 0

≥ 0, otherwise
,

∫ +∞

−∞

πr,g(∆z)d∆z = 1. (4)

we are now able to derive the probability p(τ, ∆z)dτdz that the next move of the interface will

occur between [t+τ, t+τ+dτ) with a (signed or oriented) displacement being in [∆z, ∆z+dz)
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(recall that dτ and dz are here infinitesimal). It is the product of the probability that no

move happens in [t, t+ τ), times the sum of the respective probabilities that a r or a g move

occurs in [t + τ, t + τ + dτ) with value in [∆z, ∆z + dz). For a completely homogeneous

Markovian process, the probability (to first order in dτ) that a r move occurs in the time-

interval [t + τ, t + τ + dτ) is given by dτ/〈Tr〉 (see [35, 36]), such that this motion with

displacement in [∆z, ∆z + dz) has a probability (πr(∆z)/〈Tr〉) dτdz. By analogy for the g

motion one obtains

p(τ, ∆z)dτdz = PT (τ)×
( 1

〈Tr〉
πr(∆z) +

1

〈Tg〉
πg(∆z)

)

dτdz. (5)

Integrating over ∆z the joint probability density function p(τ, ∆z), we obtain the probability

density function of the waiting time τ ,

pT (τ) =
1

〈T 〉
exp

(

− τ/〈T 〉
)

, (6)

which corresponds to the τ -derivative of (1 − PT (τ)), as expected. Further, we will need

the consolidated probability density function p∆(∆z) of the displacement. We observe that

p(τ, ∆z) can be written as the product of densities pT (τ) and p∆(∆z), such that using (5)

and (6) it comes

p∆(∆z) =
p(τ, ∆z)

pT (τ)
=
〈Tg〉πr(∆z) + 〈Tr〉πg(∆z)

〈Tr〉+ 〈Tg〉
. (7)

We are now in position to derive exact expressions for the first moments of the interface

location Z(t). Assuming that the interface is at location z0 at an initial time t0, the average

position at time t > t0 is given by 〈Z(t)〉 = z0 + 〈c〉(t− t0), where the average velocity 〈c〉

is the ratio of the mean jump (first moment of p∆) with the mean waiting time 〈T 〉. Using

(7), we obtained the expression the average velocity

〈c〉 :=
1

〈T 〉

∫

∞

−∞

∆z p∆(∆z)d∆z =
1

〈Tr〉

∫ 0

−∞

∆z πr(∆z)d∆z +
1

〈Tg〉

∫

∞

0

∆z πg(∆z)d∆z

=
〈∆Zr〉

〈Tr〉
+
〈∆Zg〉

〈Tg〉
=: 〈cr〉+ 〈cg〉, (8)

where 〈cr〉 = 〈∆Zr〉/〈Tr〉 and 〈cg〉 = 〈∆Zg〉/〈Tg〉 are the signed (oriented) average velocities

of the r and g events.
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We observe that 〈c〉 is the direct sum of the averaged conditional velocities of the r and g

motions, and not their sum weighted by the relative probabilities of the next motion being

of type r or g.

Figure 11 shows the average front velocity 〈c〉 as a function of Re, along with the

corresponding error bars. Also shown are the (unsigned) average velocities 〈cr〉 and 〈cg〉

of the r and g motions. The average front velocity 〈c〉 grows monotonically with Re for

the present convention where r events correspond to negative jumps. 〈c〉 is equal to zero

for a given value of Re = Rec2 ≈ 305 ± 10. The conclusion is clear: spanwise localised

spots tend to shrink statistically for Re ≤ Rec2 while they expand for Re ≥ Rec2. The two

threshold values Rec1 and Rec2 are expected to differ slightly given the effective asymmetry

between g and r jump distributions. The discrepancy between these two quantities is

nevertheless comparable to the accuracy of the measurements, thus we do not consider it

necessary to discuss it in detail. Let us mention again the intriguingly good match with

the experimentally and numerically obtained threshold value above which two-dimensional

spots start to grow, found to be approximatively 325.

Note that 〈c〉(Re) reaches a plateau corresponding to low but positive values of 〈c〉,

indicating a slow average expansion of the turbulent spot, in the Re-interval [320, 400]. The

existence of this plateau results directly from the competition between the two conditional

velocities 〈cg〉 and 〈cr〉, which are also shown in Figure11 .

The trend for the large-Re behaviour of 〈c〉(Re) is difficult to predict from the present

data, in particular because of the rarity of r events that forced us to the simplification

〈Tr〉 = +∞ for Re ≥ 400. However, we note that the values obtained experimentally for

the spanwise front propagation [8, 9], restricted to comparable values of Re, are nearly

one order of magnitude above the present data. As mentioned in Section 1, the quasi-1D

geometry considered here differs from the case of fully localised turbulent spots by the

absence of large-scale circulations around them [15, 16]. The mismatch in the front

velocities could thus simply reflect the omission of advection by the secondary flow in the

modelling. Another investigation focusing only on the purely spanwise propagation of a

laminar-turbulent interface yields 〈c〉 ≈ 0.08 independently of Re [37]. The modelling used

to derive this estimate is however based on the underlying assumption that Re is large. We

have interpolated the values of 〈c〉 up to Re ≈ 600 only, for which 〈c〉 ≈ 0.05 ± 0.01. The

estimate in Ref. [37] is thus consistent with the values in Fig. 11.
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FIG. 11: Average front velocity 〈c〉 as a function of Re. Also provided are the (unsigned) average

velocities of r and g events 〈cr〉(Re) and 〈cg〉(Re)

.

In a similar way as for the average front location and velocity, one can derive exact

expressions for the second order characterisation of Z(t). Of particular importance is the

variance of Z(t), denoted σ2
Z (t) :=

〈

(Z(t)− 〈Z(t)〉)2
〉

, which measures the spreading in

the interface location about its mean. For completely homogeneous Markov processes, an

explicit expression for σ2
Z (t) from the second moment of the displacement and characteristic

time-scale is available [36]:

σ2
Z (t) =

(t− t0)

〈T 〉

∫

∞

−∞

(∆z)2 p∆(∆z)d∆z, t0 ≤ t. (9)

Accounting for the expression of the consolidated displacement probability density function

in (7), the second moment of ∆z expresses as
∫

∞

−∞

(∆z)2 p∆(∆z)d∆z =
〈Tg〉

〈Tr〉+ 〈Tg〉

∫ 0

−∞

(∆z)2 πr(∆z)d∆z +
〈Tr〉

〈Tr〉+ 〈Tg〉

∫

∞

0

(∆z)2 πr(∆z)d∆z

=
〈Tg〉〈∆Z2

r 〉

〈Tr〉+ 〈Tg〉
+
〈Tr〉〈∆Z2

g 〉

〈Tr〉+ 〈Tg〉
,

(10)

where 〈∆Z2
r,g〉 are the second moments of the r and g displacements respectively. The

expression for the variance of Z(t) then becomes

σ2
Z (t) =

[

〈∆Z2
r 〉

〈Tr〉
+
〈∆Z2

g 〉

〈Tg〉

]

(t− t0), t0 ≤ t. (11)
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In addition, disregarding the extreme displacement values, we have seen that the distribu-

tions of r and g jumps can by approximated by exponential distributions; for such distribu-

tions we have 〈∆Z2
r,g〉 = 2〈∆Zr,g〉

2, leading to the following approximation for the variance

σ2
Z (t) = 2〈D〉(t− t0), 〈D〉 ≈ 〈Dr〉+ 〈Dg〉 =

〈∆Zr〉
2

〈Tr〉
+
〈∆Zg〉

2

〈Tg〉
, (12)

where 〈D〉 is the effective diffusion coefficient of the stochastic process.

Fig. 12 shows the effective diffusion coefficient 〈D〉(Re) as approximated by (12). The

quantity 〈D〉 is a measure of the statistical spreading rate of the front location. It can be

seen that 〈D〉 exhibits a plateau for Re in the range [320, 410]. Interestingly, this plateau is

located in the same range of Re values as the region of existence of the laminar-turbulent

patterns reported in Refs. [12, 13]. Such patterns are certainly excluded from the present

configuration precisely because of their obliqueness. However, it is natural to anticipate that

the mechanisms responsible for the robustness and sustenance of the patterns locally imply

statistical equilibrium for the associated fronts. This is verified here by the characteristics of

the Re-plateau observed in the present computations: vanishing front velocity and minimal

dispersion of the location of the interface.
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FIG. 12: Effective diffusion coefficient 〈D〉 of the interface motion as a function of Re. Also

provided are the diffusion coefficients 〈Dr〉(Re) and 〈Dg〉(Re) of the r and g events.
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3.4 Data-driven stochastic model

This subsection suggests a simple stochastic model based on the data from the previous

DNS. In the spirit of Ref. [38], this model allows for very low-cost simulation of the dynamics

of multiple interfaces, with the ability of tackling arbitrary large domains over times unreach-

able by DNS, while keeping the stochastic properties of the phenomenon. Let us consider

an absorbing medium (i.e. laminar for |z| → ∞) with 2n distinct interfaces, such that there

are n turbulent spots; we assume that the interfaces are ordered as Z1(t) < · · · < Z2n(t), so

that Z2i−1(t), i = 1, . . . , n, separate a laminar domain on its left-side from a turbulent do-

main on its right-side (and conversely for interfaces with even indices Z2i(t)). The stochastic

evolution of this system of interfaces is simulated as follows. Starting from the configuration

of the interfaces at an initial time t = t0, we first draw from the exponential waiting time

distribution of the system, with mean 〈T 〉/(2n), the elapse time τ to the next event. We

then select at random, with equal probability, one of the 2n interfaces, say Zi.

We further select at random the type of event (r or g), with respective probabilities Πg

and Πr given by (using the notation above)

Πr =

∫ 0

−∞

p∆(∆z)d∆z =
〈Tg〉

〈Tr〉+ 〈Tg〉
, Πg =

∫ +∞

0

p∆(∆z)d∆z =
〈Tr〉

〈Tr〉+ 〈Tg〉
. (13)

Assuming that we selected a g event (the case for r is similar), we update the system

according to

t←− t + τ, Zi ←− Zi + (−1)iη, (14)

where η is drawn at random from the exponential fit of the (unsigned) distribution P∆g.

The advancement of the system state is completed after checking that none of the interfaces

crossed with its two neighbors. Specifically, using Z0 = −∞ and Z2n+1 = +∞, if after the

displacement of the i-th interface we have Zi ≤ Zi−1 (resp. Zi ≥ Zi+1) the interfaces Zi−1

and Zi (resp. Zi and Zi+1) are removed from the set of interfaces and we affect new indices

to the remaining ones (n ← n − 2). We repeat this sequence until t reaches a prescribed

final time or, eventually, until all interfaces have disappeared.

In Figure 13, we present examples of numerical simulations corresponding to Re = 250,

350 and 450. The simulations use the exponential distributions fitted on the data from

the DNS at the corresponding Reynolds numbers. The first column shows for the three
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values of Re the evolution in time of a single turbulent spot, together with the classical

statistical representation of the 99% confidence intervals in the interface locations (using

bounds 〈Zi(t)〉 ± 3σZi
(t)). The second column shows the evolutions of an initial set of 20

turbulent spots, where two consecutive interfaces are initially set at a distance irregularly

distributed in the range [50, 150]. For Re = 250 (top row), we observe that all turbulent

spots have disappeared after a time ≃ 4, 000. For Re = 350 > Rec2, none of the turbulent

spots has disappeared, contrary to most of the inner laminar domains which have vanished

at the end of the simulation time t − t0 = 104, although their average survival time is

quite long. At Re = 450 (bottom row), all inner laminar domains have disappeared after

a time ≃ 3, 000, giving a unique turbulent spot that continuously extends with time (recall

that for Re > 400 no retreat event is modeled since we set 〈Tr〉 = +∞). Globally, the

stochastic simulator reproduces satisfactorily the dynamics observed in the DNS, except for

the large-scale relaminarisation events at the lowest Re, because of the fitted exponential

laws that disregard the large jumps associated to rare relaminarisation events. In addition,

the simulator lacks the probability of local relaminarisation inside turbulent spots. We

plan to improve the stochastic simulator in the future to incorporate the missing features

and sample the empirical distributions instead of the fitted ones. This will however require

further Navier–Stokes simulations to extract additional statistical information.
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FIG. 13: Example of stochastic simulations at Re = 250 (first row), 350 (second row) and 450

(third row). Left column: time evolution of a single turbulent spot (red (dark) domain) together

with statistical bounds 〈Zi(t)〉±3σZi
(t) for the left and right interface location (plain lines). Right

column: time evolution of a set of 20 turbulent spots (red (dark) domains).
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4. DETERMINISTIC FRONT MOTION AT LOW REYNOLDS NUMBERS

The results of the previous section point out that the assumption for Gaussianity breaks

down for the lowest values of Re. From Re ∼ 280 down to Re = 217± 1, some unexpected

non-trivial (not necessary ”turbulent”) dynamics is observed, characterised by phases of

regular growth over times much longer than predicted by the low-Re extrapolation of the

previous distributions. The fact that a non-trivial flow could be sustained in that geometry

at such low values of Re was already pointed out in Ref. [20]. At the lowest values of Re

near 217, the dynamics reduces to the competition between these growth phases and brutal

retreat events, as is suggested by the space-time diagrams for Re = 220 and Re = 225 in

Fig. 14.

FIG. 14: Space-time (z, t) diagrams for the quantity Y (z, t); Re=220 (left) and Re=225 (right)

These long growth phases are very reminiscent of the depinning transition predicted in

the vicinity of a snaking region in extended one-dimensional systems (for a recent review,

see also Ref. [39]). If the system is parametrised by a governing parameter r (here the

Reynolds number Re), there is a so-called snaking region [r1, r2] with a multiplicity of exact

localised states pinned to a periodic array of regular cells (here the streaks). Depinning

outside the snaking region causes temporal expansion or collapse of the initially localised

pattern. Expansion (resp. collapse) occurs in two ways: either through nucleation (resp.

annihilation) of new cells near the interface at a steady rate, in the case of regular homoclinic
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snaking (see Fig.14 in Ref. [40]), or through phase slips in a central region far from the

interfaces, as in the case of defect-mediated snaking (see Fig.21 in Ref. [41]). A closer

zoom of Fig. 14 reveals that the new streaks are nucleated precisely near the interface, and

at a seemingly steady rate, thus favouring the hypothesis for regular homoclinic snaking.

Homoclinic snaking is observed in situations where a non-trivial (”patterned”) steady

state with a spatially periodic structure bifurcates subcritically from a trivial homogeneous

(”laminar”) solution. Plane Couette flow definitely falls into this category, the pattern

state being associated with the non-trivial unstable solutions found so far in small periodic

domains [42, 43]. The non-trivial branch then bifurcates into two branches which can be

traced down the governing parameter and begin to intertwingle inside the range [r1, r2],

giving rise to a multiplicity of steady/travelling localised states pinned to the non-localised

patterned state. Analysis in the case of the Swift-Hohenberg equations has shown that for

0 < δ = r − r2 ≪ 1, depinning of the fronts occurs, i.e. the fronts are no longer stationary

yet drift so that the patterned state invades the whole domain with a velocity scaling as

O(δ
1

2 ) (see Fig.14 in Ref. [40]).

Recently, Schneider et al. [44] have considered the case of PCF with periodic boundary

conditions in x and z with extension in the z direction, taking (Lx, Lz) = (4π, 16π). This is

qualitatively very similar to the quasi-1D geometry considered here. They have identified

a homoclinic snaking region in the interval Re ∈ [Res1 : Res2] ≈ [170 : 175], however the

values of Re reported in that study depend strongly on the value of Lz. For the case at

hand (Lz = 10.417 ≈ 3.3π), the snaking interval is [207.4 : 213.2] [45].

In order to verify that the long growth phases are related to the depinning transition,

a set of simulations has been analysed for several values of Re between 190 and 280, all

starting from the same turbulent state obtained in a previous run at Re =250. Since we are

interested here in long growth phases rather than on the retreat or growth events on a short

time-scale, we have deliberately selected only growth events with a constant velocity on a

time scale T > 1000. An interpolation is then performed directly from space-time- diagrams

such as those in fig. 14, yielding the front velocity c = ∆z/T as a function of Re. From Fig.

15 it can be inferred that c obeys a scaling c(Re) = O((Re− Res2)
1

2 ), as suggested in Ref.

[40]. Interpolation from Fig. 15 yields the value Res2 = 216± 1 for the rightmost extremity
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of the snaking region. This is in very good agreement with the data from Ref. [45] (despite

the fact that the two compared systems use distinct values for Lz). There is little ambiguity

that the very regular regime of sustained growth observed for Re < 280 corresponds to a

depinning transition, justifying de facto its deterministic nature.
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FIG. 15: Mean velocity squared c2 associated to deterministic events over large times T > 1000

(see text). The expected c2 ∼ O(Re) scaling is indicated for comparison, along with the exact

location of the snaking region.

CONCLUSIONS

We have investigated the dynamics of a laminar-turbulent interface in plane Couette flow,

in the special case where the interface is parallel to the mean flow direction. The motion

appears to be stochastic in nature, and follows a Gaussian law above Re ≥ 280, with an

average speed (into the laminar region) increasing from negative values at low Re to positive

values at higher Re. We observe the presence of a plateau for Re ≈ [320 : 410], where the

front velocity is close to zero and the associated diffusion coefficient is minimal. Interestingly,

this plateau corresponds to the range of Re at which robust laminar-turbulent patterns are

observed in experiments and large-scale simulations. The relevance of this observation to

the description of the spreading of fully localised turbulent spots should however be analysed
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with caution, precisely because the configuration at hand deliberately ignores some typically

three-dimensional effects, the most obvious candidate being the effect of a large-scale flow

induced by the spatial localisation of the Reynolds stresses [15, 16]. Even if the front velocity

calculated here is not strictly zero within the plateau, there is a possibility that the extra

advection by the large-scale flow would exactly balance the motion of the fronts and thus

explain the steadiness of the patterns.

By pushing our statistical analysis to lower values of Re, we have encountered an unexpected

regime where the front motion appears sometimes locked to a seemingly deterministic dy-

namics. This growth regime (c > 0) contrasts strongly with the expected negative value for

the front velocity suggested by the interpolation of 〈c〉(Re) in Fig. 11. From the results

shown in Fig. 15, we interpret this deterministic regime as a depinning transition from

the homoclinic snaking regime already identified using an other approach [44]. Thus for

the lowest values of Re in our investigation, stochasticity is observed to compete with a

deterministic dynamics (see Figure 16). Whether stochastic and deterministic ”branches”

bifurcate one from another or whether these are two disconnected phenomena remains to

be investigated. No extension of the homoclinic snaking scenario to the fully localised plane
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Couette spots has been suggested so far. Provided such an extension it would be interesting

to test the relevance of this deterministic dynamics to fully localised spots.
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